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Abstract
Plantation‐grown	trees	have	to	cope	with	an	increasing	pressure	of	pest	and	disease	
in	the	context	of	climate	change,	and	breeding	approaches	using	genomics	may	offer	
efficient	and	flexible	tools	to	face	this	pressure.	In	the	present	study,	we	targeted	ge‐
netic	improvement	of	resistance	of	an	introduced	conifer	species	in	Canada,	Norway	
spruce	(Picea abies	(L.)	Karst.),	to	the	native	white	pine	weevil	(Pissodes strobi	Peck).	
We	developed	single‐	and	multi‐trait	genomic	selection	 (GS)	models	and	selection	
indices	considering	the	relationships	between	weevil	resistance,	intrinsic	wood	qual‐
ity,	and	growth	traits.	Weevil	resistance,	acoustic	velocity	as	a	proxy	for	mechani‐
cal	wood	stiffness,	and	average	wood	density	showed	moderate‐to‐high	heritability	
and	 low	genotype‐by‐environment	 interactions.	Weevil	 resistance	was	 genetically	
positively	 correlated	 with	 tree	 height,	 height‐to‐diameter	 at	 breast	 height	 (DBH)	
ratio,	and	acoustic	velocity.	The	accuracy	of	the	different	GS	models	tested	(GBLUP,	
threshold	GBLUP,	Bayesian	ridge	regression,	BayesCπ)	was	high	and	did	not	differ	
among	each	other.	Multi‐trait	models	performed	similarly	as	single‐trait	models	when	
all	trees	were	phenotyped.	However,	when	weevil	attack	data	were	not	available	for	
all	trees,	weevil	resistance	was	more	accurately	predicted	by	integrating	genetically	
correlated	growth	traits	into	multi‐trait	GS	models.	A	GS	index	that	corresponded	to	
the	breeders’	priorities	achieved	near	maximum	gains	for	weevil	resistance,	acoustic	
velocity,	and	height	growth,	but	a	small	decrease	for	DBH.	The	results	of	this	study	
indicate	that	it	is	possible	to	breed	for	high‐quality,	weevil‐resistant	Norway	spruce	
reforestation	stock	with	high	accuracy	achieved	from	single‐trait	or	multi‐trait	GS.
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1  | INTRODUC TION

Trees	are	 long‐lived	stationary	organisms	 that	have	 to	withstand	
pests	 and	 diseases	 during	 their	 lifetime.	Host–pest	 relationships	
may	 constantly	 coevolve	 over	 time	 when	 organisms	 share	 the	
same	 environment	 (Núñez‐Farfán,	 Fornoni,	 &	 Valverde,	 2007;	
Strauss	&	Agrawal,	 1999).	However,	 exotic	 species	may	be	more	
exposed	to	damage	by	pest	insects	native	to	the	area	where	they	
are	 introduced	 (Brockerhoff,	 Liebhold,	 &	 Jactel,	 2006)	 because	
resistance	 mechanisms	 have	 usually	 not	 evolved	 in	 response	 to	
the	 selective	 pressure	 imposed	 by	 native	 insects,	 which	 could	
potentially	 compromise	 the	 productivity	 of	 exotic	 tree	 planta‐
tions	(Branco,	Brockerhoff,	Castagneyrol,	Orazio,	&	Jactel,	2015).	
While	 studies	 comparing	 the	 relative	 vulnerability	 of	 native	 and	
exotic	conifers	to	native	insects	reported	mixed	results	(Fraser	&	
Lawton,	 1994;	 Langström,	 Lieutier,	 Hellqvist,	 &	 Vouland,	 1995;	
Lombardero,	 Alonso‐Rodríguez,	 &	 Roca‐Posada,	 2012;	 Roques,	
Auger‐Rozenberg,	 &	 Boivin,	 2006;	 Zas,	 Moreira,	 &	 Sampedro,	
2011),	in	the	majority	of	cases,	exotic	conifers	were	more	damaged	
than	native	ones.

Norway	 spruce	 (Picea abies	 [L.]	 Karst)	 is	 a	 conifer	 native	 to	
Scandinavia,	Eastern	Europe,	and	the	mountainous	regions	of	cen‐
tral	 Europe.	 Being	 the	 most	 important	 commercial	 softwood	 for	
lumber	 and	 pulp	 and	 paper	 production	 in	 Europe	 (Hannrup	 et	 al.,	
2004),	the	species	was	found	to	be	also	highly	productive	in	Eastern	
North	America	 and	one	of	 the	most	 productive	 conifer	 in	 planta‐
tion	in	Quebec,	Canada	(Thiffault	et	al.,	2003).	However,	it	is	highly	
susceptible	 to	 the	 indigenous	 white	 pine	 weevil	 (Pissodes strobi 
Peck),	 a	wood‐boring	 insect	 found	 in	 the	 temperate	and	 southern	
boreal	 forests	 across	 the	 North	 American	 continent.	 Larvae	 feed	
on	leader	shoots,	causing	dieback;	eventually	lateral	branches	take	

over,	causing	kink	and	crooked	stems	of	attacked	trees.	Besides	its	
principal	host	eastern	white	pine	(Pinus strobus	L.),	the	weevil	attacks	
different	 native	 spruces	 across	 the	 North	 American	 continent.	 In	
Norway	spruce,	moderate	weevil	damage	leads	to	significant	mon‐
etary	 loss	 due	 to	 stem	defects	 and	 the	 resulting	 losses	 in	 lumber	
volume	and	quality	(Daoust	&	Mottet,	2006).

The	first	Norway	spruce	plantations	were	established	in	North	
America	in	the	19th	century	and	Canadian	early	genetic	testing	ef‐
forts	of	this	species	date	back	to	the	1920s	at	the	Petawawa	National	
Research	Forest	(Holst,	1955).	Besides	the	screening	for	best	grow‐
ing	 and	 frost	 hardy	 seed	 sources,	 it	 was	 quickly	 recognized	 that	
breeding	efforts	needed	to	include	weevil	resistance	(Holst,	1963).	
The	genetic	variation	in	weevil	resistance	has	been	documented	in	
North	American	spruce	species,	including	Sitka	spruce	(Picea stichen‐
sis	[Bong.]	Carr.)	(Alfaro,	King,	&	VanAkker,	2013;	Alfaro,	VanAkker,	
Jaquish,	&	King,	2004;	King,	2004)	and	interior	spruce	(Picea glauca 
[Moench]	 Voss	 ×	 engelmannii	 Parry	 ex	 Engelm.;	 white	 spruce,	
Engelmann	 spruce,	 and	 their	 hybrids)	 (Alfaro	 et	 al.,	 2004;	 King,	
Yanchuk,	Kiss,	&	Alfaro,	1997).	Although	Norway	spruce	did	not	co‐
evolve	with	the	white	pine	weevil	in	its	native	European	range,	mod‐
erate‐to‐high	genetic	variation	and	heritability	 for	 resistance	were	
reported	 for	 this	 species	 (Holst,	 1955;	Mottet,	DeBlois,	&	Perron,	
2015).	 Current	 Canadian	 Norway	 spruce	 breeding	 programs	 are	
largely	based	on	resistant	selections	made	by	the	Canadian	Forest	
Service	 in	 the	past	 (Daoust	&	Mottet,	 2006).	However,	 selections	
were	made	following	conventional	phenotypic	evaluations	of	mature	
trees	and	pedigree‐based	approaches,	thus	requiring	many	years	of	
testing	in	genetic	experiments.	Recent	developments	in	quantitative	
genomics	and	breeding	such	as	whole‐genome	predictions	may	help	
shorten	the	evaluation	stage	and	breeding	cycles	(Park,	Beaulieu,	&	
Bousquet,	2016).

Box 1 Genomic selection: principles and application in tree breeding
Genome‐wide	prediction	or	genomic	selection	(GS;	Meuwissen	et	al.,	2001)	relies	on	simultaneously	estimating	effects	of	many	thou‐
sand	markers,	with	some	that	are	in	linkage	disequilibrium	(LD)	with	quantitative	trait	loci	(QTL),	in	order	to	estimate	the	genetic	merit	
of	an	individual.	Another	GS	approach	relies	on	using	genetic	markers	to	estimate	the	realized	genomic	relationships	(G)	between	trees	
to	obtain	predictions	(GBLUPs)	of	their	genetic	value	(VanRaden,	2008),	as	opposed	to	conventional	methods	relying	on	the	registered	
pedigree	to	make	such	predictions.
Genomic	selection	models	are	built	using	genomic	profiles	and	phenotypic	measurements	of	the	same	trees	in	a	breeding	population	
(i.e.,	training	population,	Figure	1a).	Using	these	models,	the	prediction	of	genetic	merit	can	be	made	based	on	multilocus	genotypes,	
thus	eliminating	the	need	to	phenotype	and	evaluate	the	performance	of	candidates	for	selection	(Figure	1b).	When	predictive	models	
have	been	validated	and	are	sufficiently	accurate,	genomic	selection	can	outperform	conventional	pedigree‐based	selection	given	that	
genomic	profiles	from	young	material	(seed,	seedling,	or	embryo)	can	be	obtained	to	predict	genetic	values	and	make	selections	at	a	very	
early	stage,	thus	increasing	dramatically	genetic	gains	per	unit	of	time	(Figure	2).	This	is	particularly	more	so	for	spruces,	which	can	be	
vegetatively	propagated	in	an	efficient	fashion	from	selections	made	at	the	juvenile	stage	(Park	et	al.,	2016).	GS	is	particularly	efficient	for	
(sub‐)boreal	conifers,	where	conventional	breeding	cycles	take	up	to	30	years	or	longer,	largely	due	to	the	evaluation	stage	that	can	take	
up	to	25	years	(Mullin	et	al.,	2011).	Hence,	under	the	application	of	GS,	the	role	of	phenotyping	is	significantly	changed	and	is	only	needed	
for	model	construction	and	validation.	Also,	with	same	genomic	profiles,	models	can	be	recalibrated	with	little	effort	for	different	traits	
according	to	changing	breeding	priorities.	Selection	intensity	can	also	be	increased	by	screening	large	numbers	of	candidates	without	
phenotyping	costs,	which	is	particularly	relevant	in	the	context	of	multi‐trait	selection.	GS	is	currently	being	incorporated	into	different	
spruce	breeding	programs	in	eastern	Canada.
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The	application	of	genomics	to	forest	trees	has	gained	interest	
to	 hasten	 breeding	 and	 better	 understand	 the	 genetic	 control	 of	
pest	resistance	as	well	as	economically	important	growth	and	wood	
quality	traits	(Plomion,	Bousquet,	&	Kole,	2011).	With	the	common	
limitation	of	conventional	marker	association	studies	to	predict	large	
parts	 of	 quantitative	 genetic	 variation	 (e.g.,	 Beaulieu	 et	 al.,	 2011;	
Gonzalez‐Martinez,	Wheeler,	 Ersoz,	Nelson,	&	Neale,	 2007;	Porth	
et	al.,	2013),	efforts	in	tree	breeding	have	been	turning	to	genomic	
prediction	using	dense	marker	panels.	Genomic	selection	 (GS,	Box	
1)	approaches	rely	on	estimating	effects	of	many	thousand	markers	
(Meuwissen,	Hayes,	&	Goddard,	2001)	or	using	the	realized	genomic	
relationships	(G)	between	trees	to	obtain	predictions	of	genetic	val‐
ues	 (GBLUPs;	 VanRaden,	 2008).	 Both	 GS	 approaches	 have	 been	
successfully	tested	in	proof‐of‐concept	studies	in	forest	trees	to	pre‐
dict	growth	and	wood	quality,	for	example,	in	Eucalyptus	(Resende,	
Munoz,	et	al.,	2012;	Resende,	Resende,	et	al.,	2012),	pines	(Isik	et	al.,	
2016;	Resende,	Munoz,	et	al.,	2012;	Resende,	Resende,	et	al.,	2012;	
Zapata‐Valenzuela,	 Whetten,	 Neale,	 McKeand,	 &	 Isik,	 2013),	 and	
spruces	(Beaulieu,	Doerksen,	Clément,	MacKay,	&	Bousquet,	2014;	
Beaulieu,	Doerksen,	MacKay,	Rainville,	&	Bousquet,	2014;	Chen	et	
al.,	2018;	Lenz	et	al.,	2017;	Ratcliffe	et	al.,	2015).

Most	of	the	genomic	selection	studies	in	tree	species	focused	
on	modeling	growth	and	wood	traits,	which	are	quantitative	traits	
likely	to	be	controlled	by	a	large	number	of	genes	of	small	effects	
(Namkoong,	Kang,	&	Brouard,	1988).	Despite	 the	 fact	 that	many	
tree	breeding	programs	screen	for	biotic	resistance	against	pests	
or	disease	(Mullin	et	al.,	2011),	to	our	knowledge,	there	is	no	study	
on	 the	 accuracy	 of	GS	 for	 insect	 resistance	 in	 trees.	One	 study	
tested	 different	 GS	models	 to	 predict	 resistance	 to	 a	 pathogen	
in	 loblolly	 pine	 (Pinus taeda	 L.)	 (Resende,	 Munoz,	 et	 al.,	 2012;	
Resende,	Resende,	 et	 al.,	 2012).	 The	authors	 reported	 that	 fusi‐
form	rust	resistance	was	likely	controlled	by	a	few	genes	of	large	
effects	since	it	was	best	predicted	with	Bayesian	regression	mod‐
els	that	allowed	for	different	variance	of	marker	effects.	Not	only	
is	the	genetic	architecture	of	the	trait	an	important	consideration	

in	the	choice	of	GS	model,	but	one	must	also	deal	with	the	nature	
of	the	phenotypic	data.	Screening	data	for	pest	resistance	is	most	
often	 qualitative	 or	 semiquantitative,	 which	 needs	 appropriate	
statistical	approaches	that	can	handle	non‐normality	of	modeling	
errors.	Thus,	there	 is	an	opportunity	for	testing	different	GS	ap‐
proaches	with	weevil	resistance	data	in	Norway	spruce,	for	exam‐
ple	the	Bayesian	generalized	linear	regression	models	that	support	
binary	or	ordinal	data	(Perez	&	de	los	Campos,	2014)	or	the	thresh‐
old	GBLUP	model	developed	for	ordinal	data	 (Montesinos‐López	
et	al.,	2015).

In	practice,	breeders	generally	need	to	consider	multiple	traits	si‐
multaneously	in	their	selections	for	improved	genetic	stock.	Besides	
reducing	insect	attack,	improving	growth	and	wood	volume	are	major	
goals	for	Norway	spruce,	as	it	is	for	several	plantation‐grown	coni‐
fers	 (Mullin	et	al.,	2011).	However,	 reduction	of	wood	quality	was	
observed	in	the	past	under	selection	for	accelerated	growth	(Chen	

F I G U R E  1   [Box	1]	.	Genomic	selection	
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et	al.,	2014;	Lenz,	Cloutier,	MacKay,	&	Beaulieu,	2010).	Therefore,	
important	 wood	 traits	 for	 mechanical	 applications	 such	 as	 wood	
stiffness	 should	 be	 considered	when	 performing	 selections	 (Lenz,	
Auty,	Achim,	Beaulieu,	&	Mackay,	2013).	Mottet	et	al.	 (2015)	con‐
cluded	that	selection	for	weevil	resistance	would	not	reduce	height	
growth,	but	could	affect	diameter	and	therefore	volume.	However,	
the	 genetic	 relationships	 between	 weevil	 resistance	 and	 intrinsic	
wood	 properties	 such	 as	 wood	 density	 and	 stiffness	 have	 never	
been	investigated.	Thus,	there	is	a	need	to	understand	the	genetic	
correlations	between	weevil	 resistance,	wood	quality,	 and	 growth	
traits	and	to	look	at	the	possibility	to	combine	them	in	a	multi‐trait	
genomic	selection	framework.

Multivariate	 genomic	 selection	 models	 can	 improve	 the	 accu‐
racy	of	predictions	by	taking	advantage	of	the	genetic	correlations	
between	 traits	 (Calus	&	Veerkamp,	2011).	This	ability	 is	especially	
advantageous	 for	prediction	of	 traits	 that	are	costly	or	difficult	 to	
measure	 by	 conventional	 means	 on	 a	 large	 number	 of	 candidate	
trees,	such	as	weevil	resistance	or	wood	quality,	by	using	available	
correlated	indicator	traits.	Simulation	studies	showed	that	multi‐trait	
models	can	increase	the	accuracy	of	a	target	trait	of	 low	heritabil‐
ity	when	 it	 is	modeled	together	with	genetically	correlated	 indica‐
tor	traits	harboring	high	heritability	(Guo	et	al.,	2014;	Jia	&	Jannink,	
2012).	 In	 addition,	 the	benefits	of	multi‐trait	GS	are	 increased	 for	
target	traits	with	scarce	phenotypic	records	when	they	are	coupled	
with	intensively	phenotyped	indicator	traits	(Guo	et	al.,	2014;	Jia	&	
Jannink,	 2012;	 Schulthess	 et	 al.,	 2016).	 Few	 studies	 have	 applied	
multi‐trait	genomic	selection	methods	 to	 real	plant	breeding	data‐
sets	 (e.g.,	 Bao,	 Kurle,	 Anderson,	 &	 Young,	 2015;	 Fernandes,	Dias,	
Ferreira,	 &	Brown,	 2018;	 Schulthess	 et	 al.,	 2016).	 In	 tree	 species,	
the	 accuracy	 of	multi‐trait	 versus	 single‐trait	GS	models	was	 only	

tested	on	a	few	traits	using	bivariate	models	in	loblolly	pine	(Cheng,	
Kizilkaya,	Zeng,	Garrick,	&	Fernando,	2018;	Jia	&	Jannink,	2012)	and	
in Eucalyptus	 (Cappa	et	al.,	2018),	and	these	studies	did	not	 inves‐
tigate	 the	effects	of	missing	phenotypic	data.	Given	 the	observed	
positive	genetic	correlations	between	weevil	resistance	and	height	
growth	(Mottet	et	al.,	2015),	and	the	possible	correlations	with	wood	
quality	traits,	multi‐trait	GS	models	could	 improve	the	accuracy	of	
predictions	for	traits	that	are	difficult	and	expensive	to	assess	on	a	
large	number	of	trees.

Once	accurate	genomic‐estimated	breeding	values	for	each	trait	
have	been	obtained	from	either	single‐trait	or	multi‐trait	models,	it	
is	possible	to	combine	them	into	a	selection	index	(SI;	Hazel,	1943)	
and	to	rank	individuals	based	on	their	overall	performance	across	all	
traits.	This	strategy	is	especially	useful	in	the	presence	of	negative	
genetic	correlations	in	order	to	select	material	that	achieve	a	good	
balance	in	their	performance	for	all	traits	of	interest.	In	addition,	GS	
is	especially	well	suited	to	allow	identifying	correlation	breakers	in	
sufficient	 number,	 given	 the	 higher	 selection	 intensities	 that	 can	
be	 achieved	 by	 screening	 larger	 numbers	 of	 candidates	 than	with	
conventional	methods	(Park	et	al.,	2016).	Hence,	multi‐trait	genomic	
selection	models	and	index	selection	are	two	different	tools	that	can	
be	combined	to	improve	accuracies	of	breeding	values	and	optimize	
genetic	gains,	respectively,	in	a	multi‐trait	breeding	program.

Here,	we	present	a	comprehensive	genetic	study	of	weevil	resis‐
tance	in	Norway	spruce	and	its	relationships	with	growth	and	wood	
quality	 traits	 in	 the	 context	 of	 establishing	 a	 multi‐trait	 genomic	
selection	breeding	program.	Our	objectives	were	 to	 (a)	 better	un‐
derstand	the	genetic	relationships	between	weevil	attack	and	other	
growth	and	wood	traits,	in	particular	intrinsic	wood	quality	traits;	(b)	
evaluate	the	performance	of	different	single‐trait	genomic	selection	
models,	 especially	 for	 weevil	 resistance;	 (c)	 test	 the	 performance	
of	multi‐trait	genomic	selection	models	for	predicting	a	target	trait	
(weevil	 resistance	or	wood	quality)	when	coupled	with	genetically	
correlated	indicator	traits	(e.g.,	height	growth);	and	(d)	develop	multi‐
trait	genomic	selection	indices	for	the	production	of	high‐quality	and	
weevil‐resistant	seedling	stock	in	Norway	spruce.

2  | MATERIAL AND METHODS

2.1 | Genetic material and phenotyping

The	data	analyzed	in	this	study	are	a	subset	of	a	larger	breeding	popu‐
lation	derived	 from	a	partial	diallel	mating	design	 (see	Mottet	et	 al.,	
2015	for	more	details).	We	focused	our	phenotyping	and	genotyping	
efforts	on	the	trees	planted	on	two	sites	affected	by	white	pine	weevil	
in	Quebec,	that	is,	Saint‐Modeste	(47.85°N;	69.38°W;	elevation:	140	m;	
abbreviated	 STM)	 and	Grandes‐Piles	 (46.68°N;	 72.68°W;	 elevation:	
150	m;	abbreviated	GPI),	respectively,	located	in	the	balsam	fir–yellow	
birch	and	the	sugar	maple–yellow	birch	bioclimatic	domains	(Figure	3).	
Both	tests	were	set	up	in	year	2000.	The	Grandes‐Piles	plantation	was	
heavily	affected	by	weevils	with	~70%	of	the	trees	attacked	at	 least	
once	by	age	16,	while	the	Saint‐Modeste	plantation	was	moderately	
affected	(~47%	of	the	trees	attacked	by	age	16).	To	develop	genomic	

F I G U R E  3  Location	of	the	test	sites	Saint‐Modeste	(STM)	and	
Grandes‐Piles	(GPI)	in	the	province	of	Québec,	Canada
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selection	models	for	weevil	resistance,	we	selected	40	full‐sib	families	
(35	parents),	20	of	which	were	rated	resistant	and	20	rated	susceptible	
based	on	weevil	attack	surveys	at	ages	10	and	15	on	these	two	sites.	
A	total	of	726	trees	(14	to	20	per	family,	mean	=	17.85)	were	sampled.	
Each	parent	was	crossed	on	average	2.3	times	(Figure	S1).	The	two	tri‐
als	were	established	according	to	a	randomized	complete	block	design,	
each	with	 five	blocks	and	 three‐tree	 row	plots	 for	each	 family	 (tree	
spacing:	2.5	m	×	2	m).	Because	of	tree	mortality,	not	all	families	were	
represented	in	every	block	(i.e.,	incomplete	block	design).

Tree	 height	 (Height15)	 and	 diameter	 at	 breast	 height	 (DBH15)	
were	measured	 at	 age	15.	The	height‐to‐diameter	 ratio	 (Height15/
DBH15)	was	calculated	as	a	proxy	of	stem	taper.	Three	wood	quality	
traits	related	to	mechanical	properties	were	assessed:	average	wood	
density	and	cellulose	microfibril	angle	were	determined	from	wood	
increment	cores	using	X‐ray	densitometry	and	diffractometry	at	age	
15	(Density15	and	MFA15)	as	described	in	Lenz	et	al.	(2017);	acoustic	
velocity	was	measured	at	age	16	(Velocity16)	with	the	ST300	Hitman	
tool.	Acoustic	velocity	 is	a	proxy	for	wood	stiffness	or	modulus	of	
elasticity	measured	at	standing	trees	(Chen	et	al.,	2015;	Desponts,	
Perron,	&	DeBlois,	2017;	Lenz	et	al.,	2013).

For	each	of	two	surveys	at	ages	10	and	15,	the	presence/absence	
of	weevil	 damage	 in	 the	 current	 year	 (coded	0/1)	 and	 in	 previous	
years	(coded	0/1)	were	recorded.	Current	year	damage	was	detected	
by	inspecting	the	terminal	shoot	for	emergence	holes	or	death	of	the	
leader	shoot.	Weevil	damage	in	previous	years	was	visible	by	forks,	
curves,	bayonets,	or	multiple	stems.	We	calculated	the	cumulative	
number	of	attacks	(CWA)	as:	

where	WAcurrent10	 and	WAcurrent15	 are	 the	presence/absence	of	at‐
tack	at	age	10	and	15,	respectively;	WAprevious10	is	the	presence/ab‐
sence	of	attack	prior	to	age	10;	and	WA11–14	is	the	presence/absence	
of	attack	between	ages	11	and	14.	The	variable	WA11–14,	which	was	
calculated	to	avoid	double‐counting	previous	attacks,	was	equal	to	1	

(presence)	if	there	was	an	attack	prior	to	age	15,	but	no	attack	at	age	
10	or	prior	to	age	10.	The	resulting	CWA	variable	is	ordinal	(ordered	
categories	of	0,	1,	2,	 and	3	weevil	 attacks).	Table	1	and	Figure	S2	
provide	the	summary	statistics	and	violin	plots,	respectively,	for	the	
traits	assessed	in	this	study.	Figure	S3	shows	the	spatial	distribution	
of	CWA	values	in	the	test	sites.

2.2 | SNP genotyping

The	726	trees	were	genotyped	using	an	Infinium	iSelect	SNP	array	
(Illumina),	which	was	assembled	from	a	catalog	of	high‐confidence	
gene	SNPs	obtained	from	exome	capture	and	sequencing	(Azaiez	et	
al.,	2018).	The	genotyping	reproducibility	rate	was	high	(99.94%),	as	
estimated	from	two	positive	controls	replicated	on	each	genotyping	
plate.	From	5,660	successfully	manufactured	SNPs	representing	as	
many	distinct	gene	loci	well	distributed	over	the	12	spruce	linkage	
groups	(Pavy	et	al.,	2017),	we	retained	a	total	of	3,914	SNPs	with	call	
rate	≥90%	(average	call	rate	of	99.6%),	minor	allele	frequency	(MAF)	
≥0.005,	and	a	fixation	index	|FIS|	<	0.50.	SNPs	were	well	distributed	
across	MAF	classes	with	86%	of	the	SNPs	with	MAF	≥0.05	(Figure	
S4).	 Missing	 genotypes	 (only	 0.4%	 of	 genotypes)	 were	 imputed	
using	a	k‐nearest	neighbor	method	based	on	linkage	disequilibrium	
(LD‐kNNi)	with	the	software	LinkImpute	 (Money	et	al.,	2015).	The	
software	estimated	an	accuracy	of	0.83	for	 imputed	genotypes	by	
randomly	masking	genotypes.

2.3 | Relationship matrices and pedigree verification

All	analyses	were	performed	 in	 the	R	v.3.3.1	environment	 (R	Core	
Team,	2016).	A	pedigree‐based	relationship	matrix	(A)	and	its	inverse	
were	first	computed	based	on	the	registered	pedigree	 information	
using	 the	 function	 “asreml.Ainverse”	 of	 the	 R	 package	 ASReml‐R	
v.3.0	 (Butler,	 Cullis,	 Gilmour,	 &	 Gogel,	 2007).	 For	 use	 in	 genomic	
selection	 (GS)	models,	 the	realized	genomic	 relationship	matrix	 (G,	
Figure	 S5)	 was	 computed	 from	 the	marker	 data	 with	 the	 “A.mat”	

(1)CWA=WAprevious10+WAcurrent10+WA11−14+WAcurrent15

TA B L E  1  Phenotypic	means,	standard	deviations	(SD),	and	coefficients	of	variation	(CV)	for	each	site	and	across	sites	for	the	714	trees	
retained	for	analyses

Traita Units

GPIb (n = 388) STMb (n = 326) Across sites (n = 714)

Mean SD CV (%) Mean SD CV (%) Mean SD CV (%)

Velocity16 km/s 3.71 0.33 8.96 3.69 0.31 8.54 3.70 0.32 8.77

Density15 kg/m3 344.78 24.77 7.19 395.45 29.30 7.41 367.91 36.91 10.03

MFA15 degrees 10.98 4.59 41.81 13.22 6.47 48.96 12.01 5.64 46.98

DBH15 mm 148.05 20.08 13.56 106.73 20.49 19.19 129.19 28.89 22.36

Height15 cm 908.09 128.12 14.11 788.90 111.64 14.15 853.67 134.61 15.77

Height15/DBH15 — 62.08 10.01 16.13 75.46 11.61 15.39 68.19 12.67 18.57

CWA Number	of	attacks 0.99 0.80 80.79 0.63 0.76 121.65 0.83 0.81 97.46

aMeasured	traits	in	descending	order	are	acoustic	velocity	at	age	16	as	a	proxy	for	wood	stiffness,	average	wood	density	at	age	15,	microfibril	angle	
at	age	15,	diameter	at	breast	height	at	age	15,	tree	height	at	age	15,	the	height‐to‐diameter	ratio	at	age	15,	and	the	cumulative	number	of	weevil	
attacks.	
bExperimental	sites	Grandes‐Piles	(GPI)	and	Saint‐Modeste	(STM).	
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function	of	the	R	package	rrBLUP	(Endelman	&	Jannink,	2012)	with	
the	default	options,	which	was	equivalent	to	the	formula	described	
by	VanRaden	(2008).	A	comparison	of	the	A and G	matrices	revealed	
11	“misclassified”	trees	that	presumably	did	not	belong	to	their	ex‐
pected	cross.	In	addition,	one	tree	was	deemed	an	outlier	because	it	
had	abnormally	high	average	wood	density	(Density15),	after	check‐
ing	model	residuals	(see	Equation	(2)	below).	After	removing	misclas‐
sified	and	outlier	 trees,	714	 trees	genotyped	on	3,914	SNPs	were	
used	 in	subsequent	analyses.	The	resulting	A and G	matrices	were	
highly	correlated	with	a	Pearson	 r	=	0.94	 (Figure	S6).	Large	values	
of	G	within	each	 class	of	A	 are	mostly	due	 to	 two	 inbred	 families	
(Figure	S7).

2.4 | Heritability and genotype‐by‐environment 
interactions

First,	 variance	 components,	 heritability,	 and	breeding	 values	were	
estimated	 using	 the	 conventional	 pedigree‐based	 (ABLUP)	 or	 the	
genomic‐based	(GBLUP)	individual‐tree	mixed	models	(the	so‐called	
“animal	model”)	in	ASReml‐R	v.3.0:

where y	is	the	phenotype;	μ	is	the	overall	mean;	s	is	the	fixed	site	ef‐
fect;	b(s)	is	the	random	effect	of	block	within	site,	with	b (s)∼N(0,�2

b
Ib);  

a	 is	 the	 random	 additive	 genetic	 effect,	 with	 a∼N
(
0,�2

a
A
)
; sa	 is	

the	 random	 interaction	 of	 site	 with	 additive	 genetic	 effects,	 with	
sa∼N(0,𝜎2

sa
Is⊗A);	 and	 e	 is	 the	 residual	 term,	 assuming	 homogene‐

ity	across	sites	with	e∼N(0,�2
e
Ie).	For	the	ABLUP	method,	the	matrix	

A	 is	 the	 pedigree‐based	 relationship	matrix,	which	was	 replaced	 by	
the	 realized	 genomic	 relationship	 matrix	G	 for	 the	 GBLUP	 method	
(a∼N

(
0,�2

a
G
)
 and sa∼N(0,�2

sa
IsG)).	The	X and Z	matrices	are	incidence	

matrices	of	their	corresponding	effects,	and	Ix	is	an	identity	matrix	of	
its	proper	dimension.	The	symbol	⊗	refers	to	the	Kronecker	product.	
To	test	the	hypothesis	of	greater	than	zero	variance	for	each	effect	(H0: 
σ2	=	0;	H1: σ2	>	0),	we	performed	a	likelihood‐ratio	test	with	one	de‐
gree	of	freedom	between	the	full	model	in	Equation	(2)	and	a	reduced	
model	without	the	effect	to	be	tested.	The	dominance	effect	was	not	
included	 in	models	because	 it	was	not	significant	for	all	 traits	under	
study	 (Table	 S1),	 and,	 according	 to	 BIC,	 the	 fit	 of	 models	 including	
dominance	was	similar	or	worse	than	the	models	including	the	additive	
effect	only	(Table	S2).	We	compared	model	(1)	with	a	model	fitting	a	
different	residual	variance	for	each	site	and	found	that	the	latter	model	
was	slightly	better	for	three	out	of	the	seven	traits	studied	(Table	S3).	
However,	the	breeding	values	between	both	approaches	were	highly	
correlated	for	all	traits,	with	r	>	0.99.	Thus,	we	opted	for	the	simpler	
model	in	Equation	(2)	to	keep	ABLUP	and	GBLUP	models	comparable	
with	marker‐based	genomic	selection	models.	Finally,	inspection	of	the	
residuals	from	Equation	(2)	versus	the	distance	in	X	and	Y	in	the	trials	
showed	no	detectable	spatial	patterns	(not	shown).

Narrow‐sense	individual	heritability	was	estimated	as:

The	 size	of	 genotype‐by‐environment	 interaction	 (GxE),	 or	 type‐B	
correlation	(r̂B),	was	estimated	as:

Standard	errors	of	heritability	and	type‐B	correlation	estimates	were	
obtained	using	the	delta	method	(pin	function	from	the	R	package	
nadiv;	Wolak,	2012).

2.5 | Correlations between weevil resistance, wood 
quality, and growth traits

To	estimate	single‐site	phenotypic	and	genetic	correlations	between	
traits,	 bivariate	models	were	 run	 for	 all	 pairs	 of	 traits	 in	 ASReml.	
Bivariate	models	were	run	for	each	site	separately	because	of	con‐
vergence	problems	of	the	multi‐site	model	due	to	large	GxE	for	some	
traits	(e.g.,	DBH15,	see	Results).	The	following	model	was	fitted:

where yi and yj	are	the	stacked	vectors	of	phenotypic	observations	
for	trait	 i	and	trait	 j,	 respectively;	t	 is	the	vector	of	fixed	effects	of	
traits	 (i.e.,	 the	grand	mean	 for	each	 trait);	b(t)	 is	 the	 random	effect	
of	block	nested	within	trait,	with	b (t)∼N

(
0,IbVB

)
; a(t)	is	the	random	

additive	effect	within	trait,	with	a (t)∼N
(
0,AVA

)
; and e	is	the	residual	

error,	with	e∼N
(
0,IeVR

)
.	The	matrix	A	(ABLUP)	was	replaced	by	the	

realized	genomic	relationship	matrix	(G)	for	the	GBLUP	method.	The	
matrices	VB,	VA,	and	VR	are	2	x	2	variance–covariance	matrices	de‐
fined	by	the	correlation	of	effects	between	traits	(rb,	ra,	and	re,	respec‐
tively)	and	unique	variances	for	each	trait	(i.e.,	CORGH	in	ASReml).	To	
facilitate	convergence,	we	provided	starting	values	for	the	variance	
components	in	VB,	VA,	and	VR	matrices	that	were	taken	from	the	re‐
sults	of	the	single‐trait	models	(Equation	(2),	Table	S4).	For	rb,	ra,	and	
re,	the	starting	value	was	set	to	0	(no	correlation).	The	genetic	correla‐
tion	between	traits	was	directly	provided	by	the	estimated	parameter	
r̂a	and	the	phenotypic	correlation	was	calculated	as:

where	COV(i,j)p	is	the	phenotypic	covariance	between	traits,	and	�̂�
2

pi
,	 

�̂�2
bi
,	�̂�2

ai
,	and	�̂�2

ei
	are	the	estimated	phenotypic,	block,	additive,	and	re‐

sidual	 variance	of	 trait	 i	 (same	 for	 trait	 j),	 respectively.	 The	 signif‐
icance	of	 the	genetic	correlation	 (H0: ra	=	0;	H1: ra	≠	0)	was	tested	
by	 performing	 a	 likelihood‐ratio	 test	with	 one	 degree	 of	 freedom	
between	the	full	model	in	Equation	(5)	and	a	reduced	model	assum‐
ing	ra	=	0	(i.e.,	a	diagonal	VA	matrix).	The	significance	of	the	pheno‐
typic	correlation	(H0: rp	=	0;	H1: rp	≠	0)	was	tested	by	performing	a	
likelihood‐ratio	test	with	three	degrees	of	freedom	between	the	full	
model	in	Equation	(5)	and	a	reduced	model	assuming	no	correlation	
between	traits	(rb	=	0,	ra	=	0,	and	re	=	0).	The	single‐site	heritability	
of	trait	i	was	given	by:

(2)y=�+Xs+Z1b (s)+Z2a+Z3sa+e

(3)ĥ2
ind

= �̂�2
a
∕

(
�̂�2
a
+ �̂�2

sa
+ �̂�2

e

)

(4)r̂B= �̂�2
a
∕

(
�̂�2
a
+ �̂�2

sa

)

(5)
⎡
⎢⎢⎣
yi

yj

⎤
⎥⎥⎦
=Xt+Z1b (t)+Z2a(t)+e

(6)r̂P=
COV(i,j)p√

�̂�2
pi
�̂�2
pj

=

r̂b

√
�̂�2
bi
�̂�2
bj
+ r̂a

√
�̂�2
ai
�̂�2
aj
+ r̂e

√
�̂�2
ei
�̂�2
ej√(

�̂�2
bi
+ �̂�2

ai
+ �̂�2

ei

) (
�̂�2
bj
+ �̂�2

aj
+ �̂�2

ej

)
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2.6 | Single‐trait genomic selection models

We	 evaluated	 four	 single‐trait	 GS	 methods:	 GBLUP,	 Bayesian	
ridge	 regression	 (BRR),	 BayesCπ,	 and,	 in	 addition	 for	 CWA,	
threshold	GBLUP	(TGBLUP)	developed	for	ordinal	traits.	GBLUP	
was	 implemented	 as	 described	 in	 Equation	 (2)	 in	 ASReml.	 The	
G	matrix	 describes	 the	 realized	genomic	 relationships	between	
trees,	 which	 better	 account	 for	 within‐family	 Mendelian	 sam‐
pling,	 as	 well	 as	 deeper	 (unknown)	 pedigree	 relationships.	
GBLUP	 relies	 on	 the	 “infinitesimal”	 model	 of	 quantitative	 ge‐
netics,	 assuming	 that	 the	 genetic	 control	 of	 complex	 traits	 is	
equally	distributed	across	many	(infinite)	 loci	with	small	effects	
(Falconer	&	Mackay,	1996).	The	GBLUP	model	assumed	that	re‐
siduals	are	normally	distributed	for	all	traits.	For	the	trait	CWA,	
we	 tested	 the	 threshold	 GBLUP	 model	 (TGBLUP)	 for	 ordinal	
data,	as	described	by	Montesinos‐López	et	al.	 (2015).	To	imple‐
ment	TGBLUP,	the	same	model	as	in	Equation	(2)	was	fitted,	but	
the	 response	 type	was	 set	 to	 “ordinal”	 (probit	 link	 function)	 in	
the	BGLR	R	package	v.1.0.5	(de	los	Campos,	&	Pérez‐Rodríguez,	
2016).	 Conventional‐estimated	 breeding	 values	 (EBVs)	 of	 indi‐
vidual	 trees	 for	 the	 ABLUP	 method	 or	 the	 genomic‐estimated	
breeding	 values	 (GEBVs)	 for	 the	GBLUP	 and	 TGBLUP	methods	
were	obtained	from	the	best	linear	unbiased	predictions	(BLUPs)	
of	the	random	additive	effect	(a).

BRR	and	BayesCπ	are	from	a	different	class	of	models,	in	which	
marker	 effects	 are	 estimated	 and	used	 to	predict	 breeding	values	
based	on	tree	genotypes.	We	fitted	the	following	Bayesian	model	in	
the	BGLR	package:

where y	is	the	phenotype;	μ	is	the	overall	mean;	s	is	the	fixed	site	
effect	(i.e.,	modeled	with	a	flat	prior);	b(s)	is	the	random	effect	of	
block	within	site,	with	b (s)∼N(0,�2

b
Ib); am	 is	 the	random	additive	

effect	 of	 markers;	 and	 e	 is	 the	 residual	 term,	 with	 e∼N(0,�2
e
Ie).	

Note	that	compared	with	ABLUP	and	GBLUP	models,	the	geno‐
type‐by‐environment	interaction	(GxE)	component	was	not	fitted	
in	BRR	and	BayesCπ	models,	 thus	assuming	that	marker	effects	
were	stable	across	environments.	To	account	for	different	distri‐
butions	of	marker	effects,	the	prior	for	am	changes	depending	on	
the	method	(see	Appendix	S1	for	a	full	description).	Briefly,	 the	
method	BRR	 is	a	Bayesian	version	of	 ridge	 regression,	 in	which	
marker	effects	are	normally	distributed	(i.e.,	Gaussian	prior)	and	
have	identical	variance	(am∼N(0,�2

m
Im)).	In	BRR,	all	markers	have	a	

nonzero	effect,	and	so	this	method	is	appropriate	for	traits	con‐
trolled	by	a	large	number	of	genes	with	small	effects.	In	contrast,	
the	method	BayesCπ	takes	into	account	that	only	a	proportion	π 
of	markers	have	an	effect,	while	a	proportion	 (1	−	π)	of	marker	
effects	 are	 shrunk	 toward	 zero	 (Habier,	 Fernando,	 Kizilkaya,	 &	
Garrick,	2011).	For	the	BRR	and	BayesCπ	methods,	the	response	
type	was	set	to	“ordinal”	(probit	link	function)	for	the	trait	CWA,	

and	 to	 “gaussian”	 for	 all	 other	 traits.	BGLR	was	 run	 for	50,000	
iterations	 and	 a	 thinning	 interval	 of	 20,	 with	 the	 first	 15,000	
iterations	 discarded	 as	 a	 burn‐in.	 Genomic‐estimated	 breeding	
values	(GEBVs)	were	obtained	by	summing	over	the	effects	of	all	
markers,	with	GEBVi=

∑m

j=1
Z’ijâj,	where	âj	is	the	estimated	effect	of	

the	jth	marker,	and	Z′

ij
	is	an	indicator	of	the	genotype	of	individual	

i	at	the	jth	marker.

2.7 | Multi‐trait genomic selection models

Genomic	 selection	 models	 that	 incorporated	 the	 information	 of	
multiple	correlated	traits	into	a	single	analysis	were	evaluated	using	
GBLUP	multivariate	models	in	ASReml.	To	facilitate	the	convergence	
of	multivariate	models,	 the	modeling	was	done	 in	two	steps.	First,	
phenotypes	were	adjusted	for	block	and	site	effects	 (y*)	by	taking	
the	residuals	(e)	of	a	model	that	included	a	fixed	site	effect	(s)	and	a	
random	block	within	site	effect	(b(s)):	y=�+Xs+Zb (s)+e.	After	ad‐
justing	phenotypes,	the	portion	of	GxE	due	to	rank	changes	in	dif‐
ferent	sites	remains,	but	the	“level‐of‐expression	GxE”	(i.e.,	spread	of	
breeding	values	across	environments)	is	controlled	for	(Li,	Suontama,	
Burdon,	&	Dungey,	2017).	Second,	a	multivariate	model	with	p	traits	
was	fitted:

where y*
i	 are	 the	 stacked	 vectors	 of	 adjusted	 phenotypes	 from	

trait	 i	 to	trait	p; t	 is	 the	vector	of	 fixed	effects	of	 traits	 (i.e.,	 the	
grand	 mean	 for	 each	 trait);	 a(t)	 is	 the	 random	 additive	 effect	
within	trait,	with	a (t)∼N

(
0,GVA

)
; and e	is	the	residual	error,	with	

e∼N
(
0,IeVR

)
.	The	matrices	VA,	and	VR are p	×	p variance–covari‐

ance	matrices,	defined	by	correlations	between	all	pairs	of	traits	
and	unique	variances	 for	 each	 trait.	GxE	 (as	 rank‐changes	 inter‐
action)	was	not	fitted	to	simplify	the	model	and	facilitate	conver‐
gence.	We	provided	starting	values	for	the	variance	components	
in VA and VR	matrices	that	were	taken	from	the	results	of	the	sin‐
gle‐trait	models.	We	obtained	GEBVs	of	individual	trees	for	each	
trait	separately	from	the	BLUPs	of	the	random	additive	effect	(a)	
within	trait.

We	evaluated	the	performance	of	multi‐trait	GS	models	for	pre‐
dicting	a	target	trait,	when	coupled	with	genetically	correlated	indi‐
cator	traits.	We	chose	three	target	traits,	the	cumulative	number	of	
weevil	attacks	(CWA),	average	wood	density	at	age	15	(Density15),	
and	microfibril	angle	at	age	15	(MFA15),	for	which	measurements	are	
difficult	or	costly	to	obtain	for	a	large	number	of	candidate	trees.	For	
each	target	trait,	four	multi‐trait	GS	model	was	tested:	(a)	a	two‐trait	
model	including	one	of	the	target	traits	and	Height15	as	an	indicator	
trait;	(b)	a	two‐trait	model	with	one	of	the	target	traits	and	Height15/
DBH15	ratio;	(c)	a	two‐trait	model	with	one	of	the	target	traits	and	
Velocity16;	and	(d)	a	three‐trait	model	with	one	of	the	target	traits,	
Height15/DBH15	ratio,	and	Velocity16.	To	simulate	a	situation	where	

(7)ĥ2
indss

= �̂�2
ai
∕

(
�̂�2
ai
+ �̂�2

ei

)

(8)y=�+Xs+Z1b (s)+Z2am+e

(9)

⎡
⎢⎢⎢⎢⎣

y* i

…

y*p

⎤
⎥⎥⎥⎥⎦
=Xt+Za(t)+e
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the	target	trait	was	only	measured	for	a	smaller	subset	of	the	trees,	
the	percentage	of	missing	data	 in	 the	 training	set	 (see	below)	was	
varied	 from	0%	 to	90%	by	 randomly	adding	missing	values	 to	 the	
phenotypes	of	the	target	trait.	We	repeated	this	process	100	times	
for	each	trait	and	level	of	random	missing	values	in	cross‐validation	
(see	below).

2.8 | Cross‐validation and estimation of accuracy

The	prediction	accuracy	of	ABLUP,	GBLUP	 (single	and	multi‐trait),	
TGBLUP,	BRR,	and	BayesCπ	models’	predictions	was	tested	using	a	
tenfold	cross‐validation	(CV)	scheme	combining	data	across	sites	as	
in	Beaulieu,	Doerksen,	Clément,	et	al.	(2014)	and	Lenz	et	al.	(2017).	
The	full	set	of	individual	trees	was	randomly	split	into	tenfold,	each	
containing	~10%	of	 the	 trees	 from	each	 family.	For	each	 round	of	
CV,	ninefold	(~642	trees	or	90%)	was	used	in	model	training,	which	
was	used	to	predict	the	breeding	values	for	the	remaining	fold	(~71	
validation	trees	or	10%).	This	tenfold	CV	was	repeated	ten	times,	for	
a	total	of	100	models	for	each	trait.

The	predictive	ability	(PA)	of	the	models	was	evaluated	as	
the	 Pearson	 correlation	 coefficient	 between	 the	 predicted	
breeding	values	of	the	validation	trees	and	the	adjusted	phe‐
notypes	(y*)	for	block	and	site	effects.	The	predictive	accuracy	
(PACC)	of	models	was	estimated	 from	PA	as	PACC=PA∕

√
ĥ2
ind

(Dekkers,	 2007;	 Legarra,	 Robert‐Granie,	 Manfredi,	 &	 Elsen,	
2008).	 For	 all	 the	methods	 tested	 (ABLUP,	 GBLUP,	 TGBLUP,	
BRR,	BayesCπ ,	 and	multi‐trait	GBLUP),	we	used	 the	 ĥ2

ind
	 esti‐

mated	from	the	GBLUP	model	(Equations	2	and	3)	as	our	best	
estimate	of	heritability	for	the	calculation	of	predictive	accu‐
racy	 (PACC).	 PA	 and	 PACC	were	 calculated	 within	 each	 fold	
to	 avoid	 including	 a	 fold	 effect,	 then	 averaged	 across	 folds	
and	 repetitions	 to	 obtain	 standard	 errors	 (Isik,	 Holland,	 &	
Maltecca,	2017).

For	multi‐trait	models,	the	prediction	ability	(PA)	and	prediction	
accuracy	(PACC)	of	multi‐trait	GBLUP	models	were	compared	with	
the	 equivalent	 single‐trait	 GBLUP	 models	 using	 adjusted	 pheno‐
types	as	a	response	variable	(see	Appendix	S2).

2.9 | Genetic gains and multi‐trait selection indices

Expected	genetic	 gains	 from	 single‐trait	 selection	were	 calculated	
as	the	mean	estimated	breeding	value	of	the	top	5%	trees	for	each	
trait	separately,	as	estimated	from	the	single‐trait	ABLUP	(EBVs)	or	
GBLUP	(GEBVs)	analysis	(Equation	2).	These	estimated	gains	repre‐
sented	the	maximum	possible	gain	for	each	trait.	To	estimate	genetic	
gains	 in	a	multi‐trait	selection	context,	we	combined	four	 traits	of	
economic	interest	into	a	SI	as	follows:

where Height15EBV,	 CWA6.15EBV,	 Velocity16EBV,	 and	 Density15EBV are 
the	BLUP	estimated	breeding	values	 from	the	single‐trait	ABLUP	or	
GBLUP	analysis	(Equation	2)	for	the	corresponding	trait;	and	wi	are	the	
relative	weight	given	to	each	trait,	with	the	restrictions:

0≤wi≤1	for	all	traits,	and
w1+w2+w3+w4=1.

We	assigned	a	negative	sign	to	CWA	since	a	decrease	in	the	value	
of	 this	 trait	 (fewer	 weevil	 attacks)	 represents	 an	 improvement.	
Breeding	values	for	each	trait	were	scaled	to	a	variance	of	one	(al‐
ready	 centered)	prior	 to	SI	 calculations.	DBH15	 is	 an	economically	
important	trait,	but	was	excluded	from	the	SI	scenarios	because	its	
heritability	 was	 not	 significantly	 different	 from	 zero	 (see	 results).	
The	four	weight	coefficients	were	varied	between	0	and	1	by	inter‐
vals	of	0.05,	resulting	in	1,771	different	selection	indices.	For	each	
SI,	trees	were	ranked	according	to	decreasing	values	of	the	index	(I)	
and	the	top	5%	trees	were	selected	to	calculate	the	expected	genetic	
gain.	For	each	trait,	 the	relative	genetic	gain	 (%)	was	calculated	as	
the	ratio	of	 the	expected	gain	to	the	maximum	possible	gain	from	
single‐trait	selection.	We	present,	a	first	SI	scenario	(SI‐1)	that	cor‐
responded	to	the	priorities	for	the	Norway	spruce	breeding	program	
in	Québec,	which	put	more	emphasis	on	weevil	resistance	(w2	=	0.6),	
followed	by	growth,	represented	here	by	height	growth	(w1	=	0.3),	

(10)
SI=w1Height15EBV−w2CWA6.15EBV+w3Velocity16EBV+w4Density15EBV

Traitc

ABLUP GBLUP

ĥ2
ind

r̂B ĥ2
ind

r̂B

Velocity16 0.37	(0.12)** 0.79	(0.15) 0.29	(0.08)*** 0.76	(0.16)

Density15 0.25	(0.11)* 0.65	(0.2)* 0.26	(0.08)** 0.76	(0.17)

MFA15 0.08	(0.06) 0.47	(0.32)* 0.06	(0.05) 0.43	(0.32)**

DBH15 0.00	(0.00) 0.00	(0.00)*** 0.00	(0.00) 0.00	(0.00)**

Height15 0.47	(0.16)** 0.65	(0.15)*** 0.22	(0.08)** 0.52	(0.17)***

Height15/DBH15 0.40	(0.14)** 0.68	(0.16)** 0.20	(0.08)* 0.56	(0.20)**

CWA 0.47	(0.12)*** 0.97	(0.08) 0.27	(0.07)*** 0.86	(0.15)

aThe	model	fitted	is	described	in	Equation	(2).	
bLevel	of	statistical	significance:	*p	<	0.05;	**p < 0.01; ***p < 0.001. 
cSee	Table	1	for	full	description	of	traits.	

TA B L E  2   Individual	narrow‐sense	
heritability	(ĥ2

ind
)	and	type‐B	genetic	

correlation	(r̂B)	estimates	(standard	errors	
in	parentheses)	using	the	single‐trait	
ABLUP	and	GBLUP	methods	for	the	
across‐site	analysesa.	For	heritability	
estimates,	the	significance	of	the	additive	
variance	component	is	shown	(see	Table	
S4).	For	type‐B	genetic	correlations,	the	
significance	of	the	site	×	additive	variance	
component	is	shownb.	A	significant	
site	×	additive	variance	indicates	
significant	genotype‐by‐environment	
interaction	(i.e.,	smaller	values	of	r̂B)
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and	acoustic	velocity	 (w3	=	0.1).	We	chose	 to	present	 two	 further	
SIs	 that	 maximized	 the	 total	 relative	 gain	 of	 the	 following	 traits:	
Height15,	CWA,	and	Velocity16 (SI‐2)	and	in	the	other	case	Height15,	
CWA,	Velocity16,	and	Density15	(SI‐3).

3  | RESULTS

3.1 | Heritability and genotype‐by‐environment 
interaction

In	the	across‐site	analyses,	heritability	ranged	from	0	to	0.47	using	
the	 ABLUP	 method	 and	 from	 0	 to	 0.29	 using	 GBLUP	 (Table	 2).	
Details	of	estimated	variance	components	are	in	Table	S4.	We	found	
moderate‐to‐high	 heritability	 (ABLUP:	 ĥ2

ind
	 =	 0.25–0.47;	 GBLUP:	

ĥ2
ind
	=	0.20–0.29)	for	the	cumulative	number	of	weevil	attacks	(CWA),	

wood	quality	traits	(Velocity16;	Density15),	height	growth	(Height15),	
and	 height‐to‐DBH	 ratio	 (Height15/DBH15),	 whereas	 microfibril	
angle	(MFA15)	was	under	low	additive	genetic	control	(the	additive	
variance	was	not	significantly	different	from	zero).	For	DBH15,	the	

estimated	heritability	was	null	and	the	type‐B	correlation	was	zero	
(r̂B	=	0)	due	to	large	genotype	×	environment	interaction	(GxE).	Using	
the	 GBLUP	 method,	 weevil	 resistance	 (CWA),	 acoustic	 velocity	
(Velocity16),	and	average	wood	density	 (Density15)	had	the	highest	
heritabilities	(ĥ2

ind
	=	0.26–0.29).	The	lowest	GxE	estimates	were	also	

found	 for	 these	 traits	 (r̂B	=	0.76–0.86	using	GBLUP),	 indicating	 lit‐
tle	 rank	changes	of	 families	between	sites.	GxE	was	moderate	 for	
Height15	and	Height15/DBH15	(r̂B	=	0.52–0.56	using	GBLUP)	and	was	
higher	for	MFA15 and DBH15	(r̂B	<	0.43	using	GBLUP).

3.2 | Correlations between weevil resistance, 
growth, and wood quality traits

Phenotypic	and	genetic	correlations	between	traits	using	the	GBLUP	
method	are	presented	for	each	site	separately,	in	Table	3	for	GPI,	the	
most	severely	affected	site	by	weevil	attacks,	and	in	Table	4	for	STM,	
the	site	that	was	moderately	affected.	Results	using	ABLUP	were	simi‐
lar	(GPI:	Table	S5;	STM:	Table	S6),	and	so	we	present	below	only	the	re‐
sults	using	GBLUP.	Weevil	resistance	was	significantly	correlated	with	

TA B L E  3  Site	GPI:	phenotypic	(r̂p,	above	diagonal)	and	genetic	correlations	(r̂a,	below	diagonal)	between	traits	calculated	with	the	GBLUP	
method.	Diagonal	elements	indicate	the	single‐site	narrow‐sense	heritability	(ĥ2

ind ss
)	for	each	trait.	Standard	errors	of	estimates	are	in	

parentheses.	Genetic	and	phenotypic	correlations	were	tested	for	significance.	For	ĥ2
ind ss
,	the	significance	of	the	additive	variance	component	

is	shown

Traitc Velocity16 Density15 MFA15 DBH15 Height15 Height15/DBH15 CWA

Velocity16 0.38	(0.09)*** 0.32	(0.06)*** −0.10	(0.05) −0.16	(0.06)** 0.28	(0.06)*** 0.41	(0.05)*** −0.19	(0.06)*

Density15 0.61	(0.14)*** 0.49	(0.10)*** −0.04	(0.05) −0.46	(0.05)*** −0.07	(0.07) 0.39	(0.05)*** −0.12	(0.06)

MFA15 −0.16	(0.38) −0.11	(0.40) 0.06	(0.05) 0.02	(0.05) 0.01	(0.05) −0.03	(0.05) 0.04	(0.05)†

DBH15 −0.02	(0.28) −0.38	(0.23) −0.52	(0.48) 0.18	(0.09)* 0.40	(0.05)*** −0.56	(0.04)*** 0.11	(0.06)

Height15 0.6	(0.17)** 0.00	(0.18) 0.29	(0.34) 0.33	(0.22) 0.54	(0.09)*** 0.52	(0.05)*** −0.48	(0.05)***

Height15/DBH15 0.62	(0.14)*** 0.36	(0.16)* 0.37	(0.34) −0.35	(0.21) 0.74	(0.12)*** 0.44	(0.09)*** −0.54	(0.04)***

CWA −0.52	(0.18)* −0.20	(0.19) −0.14	(0.38)† 0.49	(0.25) −0.69	(0.12)*** −0.99	(0.04)*** 0.44	(0.09)***

aThe	model	fitted	is	described	in	Equation	(5).	
bLevel	of	statistical	significance:	*p	<	0.05;	**p < 0.01; ***p < 0.001; †Convergence	failed.	
cSee	Table	1	for	full	description	of	traits.	

TA B L E  4  Site	STM:	phenotypic	(r̂p,	above	diagonal)	and	genetic	correlations	(r̂a,	below	diagonal)	between	traits	calculated	with	the	GBLUP	
methoda.	Diagonal	elements	indicate	the	single‐site	narrow‐sense	heritability	(ĥ2

ind ss
)	for	each	trait.	Standard	errors	of	estimates	are	in	

parentheses.	Genetic	and	phenotypic	correlations	were	tested	for	significance.	For	ĥ2
ind ss
,	the	significance	of	the	additive	variance	component	

is	shownb

Traitc Velocity16 Density15 MFA15 DBH15 Height15 Height15/DBH15 CWA

Velocity16 0.47	(0.11)*** 0.26	(0.07)*** −0.32	(0.05)*** −0.18	(0.08)* 0.23	(0.07)* 0.41	(0.07)*** −0.22	(0.07)**

Density15 0.16	(0.27) 0.21	(0.09)*** 0.14	(0.06) −0.43	(0.06)*** −0.16	(0.07)** 0.40	(0.06)*** −0.22	(0.06)***

MFA15 −0.78	(0.16)** 0.18	(0.32) 0.19	(0.08)*** −0.07(0.06) −0.14	(0.06) −0.01	(0.06) −0.02	(0.06)

DBH15 −0.29	(0.32) 0.08	(0.38) 0.71	(0.32)* 0.14	(0.08)** 0.62	(0.04)*** −0.69	(0.04)*** 0.25	(0.06)***

Height15 0.62	(0.22)* 0.15	(0.36) −0.16	(0.33) 0.05	(0.44) 0.21	(0.10)** 0.11	(0.07) −0.23	(0.06)**

Height15/DBH15 0.58	(0.19)* 0.02	(0.28) −0.65	(0.23)* −0.69	(0.19)* 0.71	(0.24)* 0.34	(0.10)*** −0.52	(0.05)***

CWA −0.57	(0.21)* −0.06	(0.30) 0.25	(0.29) 0.55	(0.27) −0.60	(0.25) −0.79	(0.12)*** 0.29	(0.10)***

aThe	model	fitted	is	described	in	Equation	(5).	
bLevel	of	statistical	significance:	*p	<	0.05;	**p < 0.01; ***p < 0.001. 
cSee	Table	1	for	full	description	of	traits.	
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growth	and	wood	quality	traits.	On	both	sites,	we	found	a	moderate	
negative	genetic	correlation	(GPI:	r̂a	=	−0.52;	STM:	r̂a	=	−0.57)	between	
the	cumulative	number	of	weevil	attacks	(CWA)	and	acoustic	velocity	
(Velocity16),	and	a	strong	negative	genetic	correlation	between	CWA	
and	Height15/DBH15	 (GPI:	 r̂a	=	−0.99;	STM:	 r̂a	=	−0.79).	There	was	a	
negative	genetic	correlation	between	CWA	and	Height15	on	both	sites	
(GPI:	 r̂a	 =	 −0.69;	 STM:	 r̂a	 =	 −0.60),	 although	 this	 genetic	 correlation	
was	only	significant	on	the	most	severely	affected	site	GPI	by	weevil	
attacks.	Conversely,	there	was	a	positive,	but	not	significant,	genetic	
correlation	between	CWA	and	DBH15	(GPI:	r̂a	=	0.49;	STM:	r̂a	=	0.55).	
Overall,	these	results	indicated	that	weevil‐resistant	genotypes	were	
taller,	with	 larger	 height‐to‐DBH	 ratio	 and	 higher	wood	 stiffness	 as	
measured	by	acoustic	velocity.

Significant	 genetic	 correlations	 between	 wood	 quality	 and	
growth	traits	were	found	for	both	sites.	Acoustic	velocity	(Velocity16)	
was	strongly	positively	correlated	with	Height15	and	Height15/DBH15 
for	both	sites	(r̂a	>	0.58).	Average	wood	density	(Density15)	was	also	
weakly	positively	correlated	with	Height15/DBH15	(r̂a	=	0.36)	for	site	
GPI,	 but	 this	 genetic	 correlation	was	 not	 significant	 for	 site	 STM.	
MFA	was	strongly	positively	correlated	with	DBH15	 (r̂a	=	0.71)	and	
negatively	correlated	with	Height15/DBH15	(r̂a	=	−0.65)	for	site	STM,	
but	these	correlations	were	not	significant	for	site	GPI.

3.3 | Accuracy of single‐trait genomic 
selection models

The	four	tested	single‐trait	genomic	selection	(GS)	methods	(GBLUP,	
TGBLUP,	 BRR,	 BayesCπ)	 and	 the	 conventional	 pedigree‐based	
method	 (ABLUP)	 resulted	 in	 similar	predictive	abilities	and	predic‐
tive	 accuracies.	 The	PA,	which	was	defined	 as	 the	 correlation	be‐
tween	 the	 predicted	 breeding	 values	 for	 the	 validation	 trees	 and	
the	 phenotypic	 values,	 ranged	 from	 0.10	 for	 DBH15	 to	 0.46	 for	
Velocity16	 (Figure	 4).	 Low	 heritability	 traits	 (MFA15,	 DBH15)	 had	
the	smallest	PA,	while	PA	for	all	other	traits	was	above	0.35.	After	
standardizing	PA	with	the	square	root	of	heritability,	the	estimated	
predictive	accuracy	(PACC)	was	obtained	and	it	was	high	for	all	traits	
(PACC	>	0.69).	PACC	was	very	high	(0.97)	for	Height15/DBH15 and 
above	0.80	for	CWA,	Velocity16,	Height15,	and	MFA15.	However	for	
MFA15,	the	standard	error	of	the	estimated	PACC	was	high,	which	
is	likely	due	to	a	low	heritability	estimate	with	large	standard	error.	
PACC	for	DBH15	was	not	estimated	because	of	the	null	heritability	
observed	for	this	trait.

For	 the	 cumulative	 number	 of	 weevil	 attacks	 (CWA),	 the	
three	 methods	 that	 considered	 ordinal	 data,	 namely	 TGBLUP,	
BRR,	and	BayesCπ,	had	PA	and	PACC	similar	to	those	of	GBLUP,	
which	assumed	normality	of	residuals	(Figure	4).	In	addition,	ge‐
nomic‐estimated	 breeding	 values	 obtained	 from	 TGBLUP	 and	
GBLUP	were	highly	correlated	(Pearson	r	=	0.997),	and	the	heri‐
tability	estimates	were	within	the	same	range	(GBLUP:	ĥ2

ind
	=	0.27	

(0.07);	TGBLUP:	ĥ2
ind
	=	0.30	(0.08)).	Thus,	the	assumption	of	the	

normality	 of	 residuals	 in	 GBLUP	 (Figure	 S8)	 did	 not	 appear	 to	
affect	heritability	estimates	and	 the	performance	of	 the	model	
in	our	dataset.

3.4 | Accuracy of multi‐trait genomic 
selection models

Multi‐trait	GBLUP	models	were	used	to	predict	the	breeding	values	
of	a	target	trait	 (CWA,	Density15,	or	MFA15),	when	combined	with	
genetically	correlated	indicator	traits	(Height15,	Velocity16,	Height15/
DBH15	ratio).	The	cumulative	number	of	weevil	attacks	(CWA),	av‐
erage	wood	density	 at	 age	15	 (Density15),	 and	microfibril	 angle	 at	
age	15	(MFA15)	were	chosen	as	target	traits	because	they	are	rather	
cumbersome	and	expensive	 to	 assess	on	 a	 large	number	of	 trees,	
whereas	indicator	traits	are	easier	to	track	for	the	majority	of	trees	
in	a	breeding	population.	The	multi‐trait	models	were	compared	with	
the	single‐trait	GBLUP	models.	As	expected,	when	the	percentage	
of	missing	phenotypic	data	increased	from	0%	to	90%	for	the	target	
traits	CWA,	Dens15,	and	MFA15,	the	predictive	accuracy	(PACC)	of	
the	single‐trait	models	(dashed	gray	line	in	Figure	5)	sharply	dropped	
from	0.83	to	0.59,	from	0.71	to	0.43,	and	from	0.91	to	0.55,	respec‐
tively.	Similar	trends	were	found	for	the	PA	(Figure	S9).

The	 PACC	 of	multi‐trait	 models	 was	 not	 improved	 over	 single‐
trait	models	when	all	of	the	phenotypic	data	for	the	target	trait	were	

F I G U R E  4   (a)	Predictive	ability	(PA)	and	(b)	predictive	accuracy	
(PACC)	of	the	single‐trait	genomic	selection	models	(GBLUP,	BRR,	
BayesCπ)	and	the	conventional	pedigree‐based	model	(ABLUP)	
tested	in	this	study.	For	the	cumulative	number	of	weevil	attacks	
(CWA),	three	models	accounted	for	ordinal	data	type,	namely	
the	threshold	GBLUP	model	(TGBLUP),	BRR,	and	BayesCπ,	while	
ABLUP	and	GBLUP	assumed	that	errors	were	normally	distributed.	
Error	bars	indicate	the	standard	errors	of	the	estimates.	The	PACC	
of	models	for	the	trait	DBH15	was	not	calculated	because	the	
estimated	heritability	was	null.	See	Table	1	for	full	description	of	
traits

(a)

(b)
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included	for	model	training	(0%	missing	data)	(Figure	5;	standard	er‐
rors	are	given	 in	Table	S7).	However,	 for	 the	target	 trait	CWA	with	
40%	or	more	missing	data,	the	accuracy	of	multi‐trait	models	was	im‐
proved	as	 compared	with	 that	of	 the	 single‐trait	model	 (Figure	5a).	
PACC	was	the	highest	when	CWA	was	coupled	with	the	highly	ge‐
netically	correlated	Height15/DBH15	ratio	(r̂a	=	−0.89,	average	of	sin‐
gle‐site	estimates)	as	an	indicator	trait	(blue	line	in	Figure	5a).	For	this	
two‐trait	model,	PACC	was	maintained	high	(0.74)	and	decreased	only	
marginally	when	90%	of	CWA	data	was	missing,	 as	compared	with	

the	 full	 dataset.	 The	 two‐trait	model	with	Height15	 as	 an	 indicator	
trait	 (r̂a	 =	−0.65,	 red	 line)	outperformed	 the	 single‐trait	model	only	
when	CWA	had	80%	or	more	missing	data.	When	CWA	was	coupled	
with	the	moderately	correlated	trait	Velocity16	(r̂a	=	−0.55,	green	line),	
PACC	was	 similar	 to	 that	 of	 the	 single‐trait	 model.	 The	 three‐trait	
model	including	traits	CWA,	the	Height15/DBH15	ratio,	and	Velocity16 
(purple	 line)	 outperformed	 the	 single‐trait	 model	 for	 40%	 or	more	
missing	data,	but	its	PACC	was	slightly	lower	than	that	of	the	two‐trait	
model	considering	CWA	and	the	Height15/DBH15	ratio	(blue	line).

F I G U R E  5  Predictive	accuracy	(PACC)	
of	GBLUP	multi‐trait	genomic	selection	
models	for	predicting	the	target	traits:	(a)	
the	cumulative	number	of	weevil	attacks	
(CWA);	(b)	Density15;	and	(c)	MFA15. 
The	different	colored	lines	represent	
different	multi‐trait	models	with	different	
indicator	traits.	The	dashed	gray	line	
is	the	single‐trait	GBLUP	model.	The	
percentage	of	missing	phenotypic	data	
for	the	target	trait	in	the	training	sets	
was	varied	from	0%	to	90%	(x‐axis),	while	
100%	of	the	training	data	was	retained	
for	the	indicator	traits.	See	Table	1	for	full	
description	of	traits

(b) (c)(a) 15 15

M

TA B L E  5  Genetic	gains	for	each	traita	when	selecting	the	top	5%	trees	in	three	selection	index	scenarios	(SIs)	using	the	ABLUP	and	
GBLUP	methods.	Gains	are	expressed	as	a	percentage	of	the	phenotypic	mean.	A	positive	percentage	indicates	an	improvement	in	the	value	
of	the	trait.	DBH15	was	not	considered	because	of	the	null	heritability	and	associated	null	genetic	gains

Selection indexb
Velocity16 
(%)

Density15 
(%)

MFA15
b 

(%)
Height15 
(%)

Height15/DBH15 
(%)

CWAb 
(%)

ABLUP

SI−1:	emphasis	on	weevil	resistance 
(w1	=	0.3;	w2	=	0.6;	w3	=	0.1;	w4	=	0)

4.27 0.08 1.70 12.13 10.97 67.97

SI−2:	maximize	Height15,	CWA,	Velocity16 
(w1	=	0.25; w2	=	0.4; w3	=	0.35; w4	=	0)

6.32 0.14 4.91 12.36 11.09 56.89

SI−3:	maximize	Height15,	CWA,	Velocity16,	
Density15 
(w1	=	0.2; w2	=	0.3; w3	=	0.25; w4	=	0.25)

5.77 1.87 0.25 11.51 11.10 53.77

GBLUP

SI−1:	emphasis	on	weevil	resistance 
(w1	=	0.3; w2	=	0.6; w3	=	0.1; w4	=	0)

5.30 0.62 3.61 7.82 9.74 54.57

SI−2:	maximize	Height15,	CWA,	Velocity16 
(w1	=	0.3; w2	=	0.35; w3	=	0.35; w4	=	0)

6.17 0.51 5.62 8.10 10.30 50.33

SI−3:	maximize	Height15,	CWA,	Velocity16,	
Density15 
(w1	=	0.25; w2	=	0.25; w3	=	0.25;	 w4	=	0.25)

5.60 2.60 2.09 7.93 10.18 45.84

aSee	Table	1	for	full	descriptions	of	traits.	
bIndex	selection	formula	(Equation	10):	SI=w1Height15EBV−w2CWA6.15EBV+w3Velocity16EBV+w4Density15EBV , where Height15EBV,CWA6.15EBV,	Velocity16EBV
,	and	Density15EBV	are	the	BLUP	estimated	breeding	values	from	the	single‐trait	ABLUP	(EBVs)	or	GBLUP	(GEBVs)	analysis	for	the	corresponding	trait	
(Equation	2).	
cFor	MFA	and	CWA,	an	improvement	(positive	percentage)	is	associated	with	a	decreasing	value	of	the	trait	(i.e.,	a	reduction	of	the	microfibril	angle	
and	a	reduction	of	the	cumulative	number	of	weevil	attacks,	respectively).	
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For	 the	 target	 traits	Density15	 and	MFA15	 (Figure	 5b,c),	multi‐
trait	models	 did	 not	 improve	 PACC	 over	 single‐trait	 GBLUP,	 even	
when	the	target	trait	had	large	amount	of	missing	data.	For	MFA15,	
some	of	the	multi‐trait	models	showed	even	a	lower	PACC	than	the	
single‐trait	models.

3.5 | Genetic gains and multi‐trait selection indices

The	expected	genetic	gains,	expressed	as	a	percentage	of	the	pheno‐
typic	mean	when	selecting	the	top	5%	trees	for	each	trait	separately	
(single‐trait	selection),	are	given	in	Table	S8.	For	the	cumulative	num‐
ber	of	weevil	attacks	(CWA),	a	positive	gain	represents	a	reduction	
of	the	number	of	attacks	(i.e.,	higher	resistance).	CWA	could	be	im‐
proved	by	 as	much	 as	78%	 (ABLUP)	or	66%	 (GBLUP),	while	other	
traits	 showed	much	smaller	gains	 in	 the	4%–20%	range.	The	 large	
observed	gains	for	CWA	are	likely	due	to	a	moderate‐to‐high	herit‐
ability	of	CWA,	a	large	coefficient	of	phenotypic	variation	(Table	1),	
and	the	non‐normal	distribution	of	the	trait.

The	 expected	 gains	 from	 the	multi‐trait	 selection	 indices	 (SIs)	
are	shown	in	Table	5.	Results	from	ABLUP	and	GBLUP	were	similar,	
and	so,	we	present	only	the	GBLUP	results	below.	The	first	selection	
index	 scenario	 (SI‐1)	presents	 the	planned	breeding	 focus	and	put	
most	emphasis	on	weevil	resistance	(w2	=	0.6),	followed	by	Height15 
(w1	=	0.3),	and	by	Velocity16	 (w3	=	0.1).	This	scenario	achieved	the	
largest	 gains	 in	 terms	 of	 reduction	 of	 cumulative	 weevil	 attacks	
(CWAs)	(83%	of	maximum	possible	gains	from	single‐trait	selection	
in	Table	S8),	while	still	yielding	desirable	gains	for	Height15	(86%	of	
maximum)	and	Velocity16	(74%	of	maximum).	The	SI‐2	scenario	that	
simultaneously	maximized	 the	genetic	gain	 in	Height15,	Velocity16,	
and	CWA	reached	as	much	as	89%,	87%,	and	76%	of	the	maximum	
possible	 gains	 for	 each	 trait,	 respectively.	 In	 this	 scenario,	MFA15 
was	 also	 improved	 by	 5.6%	 (62%	of	maximum).	 For	 SI‐1	 and	 SI‐2,	
the	gain	 in	Density15	was	marginal.	For	SI‐3,	Density15	was	added	
as	 an	 important	 trait	 to	maximize	 along	with	Height15,	 Velocity16,	
and	CWA.	This	SI	scenario	slightly	 improved	gains	 in	Density15 by 
2.6%	(51%	of	maximum),	but	at	the	cost	of	smaller	improvements	for	
Height15,	Velocity16,	CWA,	and	MFA15.	 In	all	three	SIs,	stem	taper,	
as	estimated	by	the	Height15/DBH15	ratio,	was	improved	(i.e.,	lower	
stem	taper)	by	~10%.

4  | DISCUSSION

4.1 | Genetic control of weevil resistance and its 
relationships to growth and wood quality traits

Tree	 breeding	 uses	 the	 existing	 natural	 intraspecific	 variation	 to	
identify	 superior	 genotypes	with	 desirable	 attributes.	 In	 this	 con‐
text,	the	heritability	of	natural	resistance	to	pests	may	be	seen	as	an	
indicator	for	the	evolutionary	potential	of	the	species	(Charmantier	
&	Garant,	 2005;	Geber	&	Griffen,	2003).	 In	 a	 recently	 introduced	
species	such	as	Norway	spruce	to	North	America,	natural	selection	
for	 resistance	to	native	pests	may	have	acted	only	 for	one	or	 two	
generations	 at	 best.	 Nevertheless,	 we	 showed	 that	 resistance	 to	

white	pine	weevil	attack	was	under	moderate‐to‐high	genetic	con‐
trol.	 Individual	 heritability	 estimates	 (ABLUP)	were	 slightly	 higher	
than	in	an	earlier	study	by	Mottet	et	al.	(2015),	who	combined	data	
from	more	families	and	tests	than	this	study,	but	values	were	in	the	
same	range	than	those	observed	in	the	native	interior	spruce	(King	
et	al.,	1997)	and	slightly	higher	than	those	in	the	native	Sitka	spruce	
(King,	 2004).	 In	 its	 native	 range,	 Norway	 spruce	 suffers	 damages	
from	another	weevil	species,	the	large	pine	weevil	(Hylobius abietis),	
mostly	 at	 the	 seedling	 stage	 after	 clearfelling	 operations	 (Day	 &	
Leather,	1997).	Although	both	weevil	species	do	not	attack	trees	at	
the	same	developmental	stage,	both	feed	on	the	bark	and	phloem,	so	
it	is	likely	that	resistance	mechanisms	to	different	weevils	are	partly	
related.	Zas	et	al.	(2017)	found	moderate	family	heritability	and	low	
GxE	 for	 resistance	 to	 the	 pine	weevil	 in	 Norway	 spruce.	 Norway	
spruce	has	also	faced	outbreaks	of	bark	beetles,	such	as	Ips imitinus 
and Ips typographus,	after	major	storms	such	as	those	that	occurred	
in	 Central	 Europe	 in	 the	 1990s	 (Wermelinger,	 2004).	 Resin	 canal	
traits	relevant	for	constitutive	resistance	against	bark	beetles	were	
found	to	be	under	strong	genetic	control	(Rosner	&	Hannrup,	2004).	
Thus,	 it	 is	 likely	 that	 genetic	 variation	 at	 resistance	 genes	 for	 the	
North	American	white	pine	weevil	was	already	available	at	the	time	
of	introduction	of	Norway	spruce	in	North	America,	as	the	result	of	
natural	selection	against	insect	pests	in	Europe,	with	opportunities	
for	rapid	change	in	allele	frequencies	at	resistance	loci.

In	our	study,	both	CWA	and	tree	height	at	age	15	were	under	sig‐
nificant	genetic	control	and	the	genetic	correlation	between	these	
traits	was	negative,	but	significant	only	for	the	site	that	suffered	the	
most	frequent	weevil	attacks	(GPI).	These	results	are	not	surprising	
given	that	height	growth	is	mechanistically	stunted	in	consequence	
of	 attack,	 while	 the	 tree	 continues	 to	 grow	 in	 DBH	 and	 volume.	
Indeed,	with	 increasing	age,	a	higher	height/DBH	ratio	and	 thus	a	
lower	stem	taper	was	observed	in	more	weevil‐resistant	trees	(Holst,	
1955;	Mottet	et	al.,	2015;	this	study).	King	et	al.	(1997)	also	reported	
negative	genetic	correlations	between	CWA	and	tree	height	for	inte‐
rior	spruce	in	British	Columbia,	both	before	and	after	the	occurrence	
of	 weevil	 attacks.	 They	 concluded	 that	 inherently	 faster	 growing	
families	have	higher	 level	of	genetic	resistance.	 In	Norway	spruce,	
Mottet	et	al.	 (2015)	 found	negligible	genetic	correlations	between	
weevil	 attacks	 and	 tree	 height	 measured	 before	 the	 majority	 of	
weevil	attacks	(age	5)	and	concluded	that	genetic	improvement	for	
resistance	to	white	pine	weevil	would	not	adversely	affect	growth.	
On	the	other	hand,	the	strong	positive	genetic	correlation	between	
resistance	to	weevil	attacks	and	height	at	age	15	found	on	site	GPI	
in	this	study	may	indicate	that	they	are	controlled	by	common	genes,	
which	was	also	suggested	by	an	earlier	QTL	study	in	interior	spruce	
(Porth	et	al.,	2012).	In	addition,	resistance	mechanisms	to	European	
bark	beetles	such	as	 resin	canal	 traits	were	 found	to	be	positively	
genetically	correlated	with	both	height	growth	and	DBH	(Rosner	&	
Hannrup,	2004).	Overall,	our	results	suggest	that	accelerated	breed‐
ing	of	resistant	seed	stock	through	genomic	selection	tools	will	re‐
sult	in	taller	trees,	either	because	the	leaders	of	resistant	trees	will	
be	 less	 affected	 by	 attacks,	 or	 because	 alleles	 underlying	 growth	
genes	will	be	simultaneously	favored.
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The	genetic	control	of	variation	in	wood	quality	traits,	such	as	av‐
erage	wood	density	and	acoustic	velocity	as	a	proxy	for	wood	stiff‐
ness,	was	in	the	same	range	as	that	for	weevil	resistance.	Compared	
to	recent	wood	quality	studies	of	Norway	spruce	from	Scandinavia	
(Chen	et	al.,	2014,	2015),	our	heritability	estimates	were	lower	for	
average	wood	density,	but	higher	for	acoustic	velocity.	Heritability	
estimates	for	MFA	were	low	compared	with	those	reported	in	previ‐
ous	studies	(Chen	et	al.,	2014;	Lenz	et	al.,	2010),	which	is	most	likely	
related	to	the	measuring	approach	used	in	the	present	study	where	
only	 the	 last	 ring	was	assessed.	The	moderate	heritability	and	 the	
resulting	 sizeable	genetic	gain	observed	here	 for	acoustic	velocity	
make	it	a	promising	quick‐assessment	trait	for	improving	wood	stiff‐
ness	and	product	quality	(Lenz	et	al.,	2013).	In	addition,	wood	stiff‐
ness	can	be	improved	together	with	weevil	resistance	since	acoustic	
velocity	was	negatively	genetically	 correlated	with	 the	cumulative	
number	 of	weevil	 attacks.	Moreover,	 weevil	 resistance	 and	wood	
traits	 showed	 low	 genotype‐by‐environment	 interactions,	 which	
should	 facilitate	 reforesting	 selected	 planting	 stock	 across	 larger	
breeding	zones.	Average	wood	density	did	not	appear	to	be	the	best	
trait	for	overall	improvement	of	Norway	spruce	in	the	tested	condi‐
tions	given	its	negative	correlations	with	growth	traits	and	slightly	
higher	 genotype‐by‐environment	 interaction.	 Overall,	 given	 their	
positive	genetic	correlations	and	moderate‐to‐high	heritability,	wee‐
vil	resistance,	acoustic	velocity,	and	height	growth	appear	as	excel‐
lent	candidate	traits	for	simultaneous	genetic	improvement.

4.2 | Genomic selection models for accurate and 
hastened selection of best genotypes

Genomic	 selection	 can	 significantly	 shorten	 breeding	 cycles	
through	 the	 prediction	 of	 breeding	 values	 of	 nonphenotyped	
material	 using	 their	 genomic	 profiles	 and	 allows	 screening	more	
candidates	 for	 increase	 selection	 intensity	 or	 multi‐trait	 selec‐
tion.	 Compared	with	 the	 conventional	 pedigree‐based	 approach	
(ABLUP),	genomic	selection	models	using	GBLUP,	BRR,	or	BayesCπ 
had	comparable	PA	and	accuracy,	confirming	early	proof‐of‐con‐
cept	 studies	 in	 other	 conifers	 and	 spruces	 (Beaulieu,	 Doerksen,	
Clément,	 et	 al.,	 2014;	Beaulieu,	Doerksen,	MacKay,	 et	 al.,	 2014;	
Gamal	El‐Dien	et	al.,	2015;	Lenz	et	al.,	2017;	Ratcliffe	et	al.,	2015).	
In	BRR	and	BayesCπ,	we	did	not	fit	genotype‐by‐environment	in‐
teractions	as	opposed	to	ABLUP	and	GBLUP	methods,	but	this	did	
not	affect	PA	nor	predictive	accuracy.

Predictive	ability	was	related	to	heritability	and	was	lowest	for	
the	low	heritability	traits	MFA15 and DBH15.	This	is	because	the	pro‐
portion	 of	 phenotypic	 variation	 that	 can	 be	 explained	 by	 additive	
genetic	effects	is	smaller	for	these	traits.	Comparisons	of	predictive	
accuracy	of	breeding	values	across	studies	are	difficult	because	of	
the	absence	of	a	standard	way	of	determination.	For	similar	growth	
and	wood	quality	traits,	predictive	accuracy	was	slightly	higher	than	
previously	observed	for	native	Norway	spruce	(Chen	et	al.,	2018)	or	
for	white	spruce	(Beaulieu,	Doerksen,	Clément,	et	al.,	2014;	Beaulieu,	
Doerksen,	MacKay,	et	al.,	2014;	Gamal	El‐Dien	et	al.,	2015;	Ratcliffe	
et	al.,	2015),	and	it	was	lower	and	more	variable	than	that	observed	

for	black	 spruce	 (Picea mariana	 [Mill.]	B.S.P.)	 (Lenz	et	 al.,	 2017).	 In	
contrast	to	those	previous	GS	studies,	we	assumed	herein	that	true	
breeding	values	were	unknown	and	calculated	the	predictive	accu‐
racy	by	dividing	the	PA	by	the	square	root	of	heritability	(Dekkers,	
2007;	Legarra	et	al.,	2008).	Hence,	predictive	accuracy	should	not	
be	correlated	with	heritability,	but	depends	on	other	characteristics	
of	the	dataset,	such	as	the	accuracy	of	phenotypic	measurements,	
the	effective	population	size,	and	the	genetic	architecture	of	traits	
(Grattapaglia	&	Resende,	2011).	However,	the	precision	of	the	pres‐
ent	estimates	of	predictive	accuracy	may	be	affected	by	the	preci‐
sion	of	heritability	estimates.

In	theory,	GS	should	perform	better	than	pedigree‐based	mod‐
els	 because	 it	 allows	 correcting	 pedigree	 errors	 and	 capturing	
the	 within‐family	 variation	 resulting	 from	 Mendelian	 segregation	
(Grattapaglia	et	al.,	2018).	Thus,	in	a	forward	selection	scenario	with	
nonphenotyped	young	material,	the	selection	of	the	best	individu‐
als	within	 families	 becomes	 possible	with	GS.	 In	 the	 present	 con‐
text	of	small	size	of	the	breeding	population,	we	conclude	that	the	
estimated	genomic	predictions	for	resistance	to	weevil	attack,	tree	
height,	height/DBH	ratio,	and	wood	quality	traits	allow	for	accurate	
and	hastened	selection	of	best	candidates	based	on	their	genomic	
profiles.

4.3 | Evidence for polygenic control of weevil 
resistance in spruces

To	 our	 knowledge,	 the	 present	 study	 is	 the	 first	 one	 applying	
genomic	 selection	 to	 breed	 for	 insect	 resistance	 in	 conifers.	 We	
therefore	had	particular	interest	in	testing	different	algorithms	that	
considered	 the	 ordinal	 distribution	 of	 this	 trait	 and	 that	 reflected	
different	distributions	of	marker	effects.	First,	we	found	no	advan‐
tages	of	using	methods	 that	accounted	 for	ordinal	data	 (threshold	
GBLUP,	BRR,	and	BayesCπ),	as	compared	with	approaches	that	as‐
sumed	 normality	 of	 residuals	 (ABLUPs	 and	GBLUPs).	 Second,	 the	
BayesCπ	algorithm,	which	assumed	that	only	a	portion	of	genes	had	
an	effect,	did	not	lead	to	improvement	of	PA	or	accuracy	compared	
with	methods	 assuming	 that	 all	 genes	 had	 small	 effects	 (GBLUPs,	
BRR).	 In	BayesCπ,	 the	 estimated	 proportion	 of	markers	 having	 an	
effect	(� ≅ 0.50)	for	weevil	resistance	was	in	the	same	range	as	that	
for	other	traits	(Table	S9).	In	contrast,	Resende,	Munoz,	et	al.	(2012)	
and	Resende,	Resende,	et	al.	(2012)	obtained	a	higher	predictive	ac‐
curacy	using	BayesCπ	 for	 fusiform	 rust	 resistance	 in	 loblolly	 pine,	
which	 suggested	 the	 presence	of	 large	 effect	 genes.	Our	 findings	
can	be	explained	by	two	possible	phenomena:	(a)	weevil	resistance	
is	effectively	controlled	by	many	genes	of	small	effects,	with	no	de‐
tectable	major	gene	effects;	or	(b)	none	of	the	sampled	SNPs	was	in	
close	linkage	with	genes	having	effects	for	resistance.	It	is	difficult	to	
discriminate	between	both	hypotheses,	especially	since	GS	models	
with	 the	 current	 genome	 coverage	 and	 small	 size	 of	 the	 breeding	
population	 should	mostly	 retrace	 relatedness	 between	 trees	 from	
long‐range	linkage	disequilibrium	(e.g.,	Beaulieu,	Doerksen,	MacKay,	
et	al.,	2014;	Lenz	et	al.,	2017)	and	could	thus	provide	high	predictive	
accuracies	 following	 both	 sets	 of	 conditions.	 However,	 polygenic	
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control	 of	 weevil	 resistance	 seems	 plausible	 since	 earlier	 reports	
associated	 resistance	 to	 weevil	 attack	 with	 different	 constitutive	
and	induced	mechanisms.	Physical	defense	barriers	to	weevil	were	
described	through	sclereids	and	stone	cells	in	the	bark	of	sitka	and	
hybrid	spruces	(King,	Alfaro,	Lopez,	&	Van	Akker,	2011;	Whitehill	et	
al.,	2016).	 In	addition,	 chemical	defense	strategies	are	also	at	play	
through	the	presence	of	abundant	constitutive	resin	ducts	(King	et	
al.,	2011;	Rosner	&	Hannrup,	2004)	and	the	additional	formation	of	
traumatic	 resin	ducts	 (Poulin,	Lavallee,	Mauffette,	&	Rioux,	2006),	
together	with	 increase	 in	terpenoid	metabolite	production	(Robert	
et	al.,	2010)	 following	 insect	 feeding.	Porth	et	al.	 (2012)	 identified	
many	 candidate	 genes	 for	weevil	 resistance	 in	 interior	 spruce,	 in‐
cluding	 some	 master	 regulatory	 genes.	 Moreover,	 transcriptome	
studies	 in	Sitka	spruce	revealed	several	thousand	differentially	ex‐
pressed	genes	between	resistant	and	sensible	genotypes,	as	well	as	
following	weevil	wounding	and	feeding	(Ralph	et	al.,	2006;	Whitehill	
et	 al.,	 2019).	 Hence,	 weevil	 resistance	 in	 Norway	 spruce	 is	 most	
likely	polygenic	given	the	complex	nature	of	physical	and	chemical	
defense	mechanisms,	but	whether	some	larger	gene	effects	exist	re‐
mains	to	be	elucidated.

4.4 | Multi‐trait GS as a tool to improve accuracy of 
scarcely phenotyped traits

The	 joint	modeling	of	multiple	 traits	can	benefit	 from	genetic	cor‐
relations	between	traits	and	 increase	predictive	accuracy	 (Calus	&	
Veerkamp,	2011;	Guo	et	al.,	2014;	Jia	&	Jannink,	2012).	In	Eucalyptus,	
Cappa	 et	 al.	 (2018)	 reported	modest	 improvements	 in	 the	predic‐
tive	 accuracy	 of	 breeding	 values	 from	multi‐trait	 over	 single‐trait	
GS	 models	 (~2%–4%)	 when	 a	 low	 heritability	 target	 trait	 (tree	
height)	was	coupled	with	a	highly	genetically	correlated	trait	(DBH,	
ra	=	0.92).	Other	empirical	plant	or	tree	breeding	studies	found	little	
benefits	of	using	multi‐trait	GS	to	predict	nonphenotyped	selection	
candidates	when	100%	of	 the	 individuals	 in	 the	 training	 set	were	
phenotyped	(Bao	et	al.,	2015;	Cheng	et	al.,	2018;	Fernandes	et	al.,	
2018;	 Jia	 &	 Jannink,	 2012;	 Schulthess	 et	 al.,	 2016).	 Similarly,	 we	
found	that	multi‐trait	GBLUP	did	not	outperform	single‐trait	mod‐
els	when	all	individuals	in	the	training	set	were	phenotyped	for	the	
target	trait.	Thus,	in	cases	when	phenotypic	information	is	balanced	
across	 traits,	 single‐trait	 modeling	 is	 the	 recommended	 method	
given	that	they	harbor	reduced	model	complexity	(Schulthess	et	al.,	
2016).

Multi‐trait	 GS	 models	 present	 an	 interesting	 strategy	 to	 cope	
with	traits	that	have	large	amount	of	missing	values	because	they	are	
difficult	or	costly	to	measure,	such	as	traits	related	to	resistance	to	
biotic	and	abiotic	factors,	or	wood	quality	traits.	We	found	that	when	
we	 included	a	highly	genetically	correlated	growth	trait	 (Height15/
DBH15	 ratio	or	Height15)	as	an	 indicator	 trait,	 the	multi‐trait	mod‐
els	 predicted	 resistance	 to	 weevil	 attacks	 more	 accurately	 when	
there	was	a	large	amount	of	missing	data	for	this	trait.	However,	the	
advantage	of	multi‐trait	over	single‐trait	GS	disappeared	as	the	ge‐
netic	correlation	between	weevil	 resistance	and	the	 indicator	 trait	
decreased	to	r̂a	=	−0.55	when	using	Velocity16	as	the	indicator	trait.	

Similarly,	 there	 was	 no	 advantage	 of	 using	 multi‐trait	 models	 to	
predict	 the	 target	 traits	Density15	or	MFA15,	which	was	 likely	due	
to	weak	 or	 inconsistent	 genetic	 correlations	 across	 sites	 between	
the	target	and	indicator	traits.	Previous	studies	similarly	found	that	
multi‐trait	models	performed	best	when	the	genetic	correlation	be‐
tween	traits	was	high	(ra	>	0.5;	Calus	&	Veerkamp,	2011;	Guo	et	al.,	
2014;	Montesinos‐López	et	al.,	2016).	Thus,	our	results	and	those	of	
previous	studies	suggest	that,	in	the	case	of	a	target	trait	with	mod‐
erate	heritability	such	as	weevil	resistance,	multi‐trait	GS	models	are	
only	 advantageous	 when	 a	 highly	 genetically	 correlated	 indicator	
trait	is	available.

In	a	breeding	context,	our	results	open	up	possibilities	to	consider	
material	tested	on	sites	where	no	record	of	weevil	attacks	have	been	
taken.	Accurate	phenotyping	of	weevil	 resistance	 requires	numer‐
ous	visits	at	each	trial	and	at	different	plantation	ages.	Furthermore,	
an	appropriate	level	of	attack	at	each	site,	ideally	more	than	50%	of	
attacked	trees,	is	desirable	to	properly	evaluate	genetic	resistance.	
These	 constraints	 imply	 that	 resistance	 to	weevil	 attacks	 is	 often	
recorded	only	for	a	part	of	available	test	sites	and	material.	In	such	
cases,	multi‐trait	GS	models	can	be	used	to	more	accurately	predict	
weevil	resistance	for	the	trees	in	nonphenotyped	sites	when	an	in‐
dicator	trait	has	been	measured	in	all	sites	(Montesinos‐López	et	al.,	
2016).	Furthermore,	the	 low	genotype‐by‐environment	 interaction	
of	resistance	to	weevil	attacks	found	in	this	study	and	in	Mottet	et	
al.	(2015)	would	ensure	relatively	high	accuracies	of	predictions	be‐
tween	sites	 (Beaulieu,	Doerksen,	MacKay,	et	al.,	2014;	Lenz	et	al.,	
2017).

Due	 to	 convergence	 issues	 for	 the	 three‐trait	 models,	 we	 did	
not	account	for	genotype‐by‐environment	interactions	(GxE)	in	our	
multi‐trait	models.	We	adjusted	the	phenotypes	for	site	and	block	
effects,	but	this	standardization	does	not	control	for	GxE	due	to	rank	
changes	between	sites.	Nevertheless,	 this	seemed	to	be	a	reason‐
able	model	simplification	 in	the	present	case,	given	that	we	found	
the	 same	 predictive	 accuracy	 for	 single‐trait	 GBLUP	 models	 that	
accounted	for	GxE	(Equation	2)	compared	with	GBLUP	models	that	
used	the	adjusted	phenotype	as	a	response	variable	and	did	not	ac‐
count	for	GxE	(Equation	11	in	Appendix	S2,	Table	S10).

Models	with	more	 than	 two	 traits	 have	 only	 been	 tested	 in	 a	
handful	of	studies	(Bao	et	al.,	2015;	Schulthess	et	al.,	2016;	Tsuruta,	
Misztal,	Aguilar,	&	Lawlor,	2011).	In	particular,	Schulthess	et	al.	(2016)	
did	not	 find	any	benefit	of	using	 three‐trait	over	 two‐trait	models	
when	 the	aim	was	 to	predict	only	one	 target	 trait.	However,	 they	
found	that	the	three‐trait	model	was	better	to	predict	two	scarcely	
phenotyped	 target	 traits,	 when	 a	 third	 correlated	 trait	 was	 fully	
available.	 In	 this	 study,	 the	 three‐trait	 model	 with	 indicator	 traits	
Height15/DBH15	 ratio	 and	Velocity16	 did	 not	 outperform	 our	 best	
two‐trait	model	using	only	Height15/DBH15	ratio	as	an	indicator	trait	
to	 predict	 resistance	 to	weevil	 attacks.	 This	 is	 because	Velocity16 
was	much	 less	 correlated	with	weevil	 resistance	 (r̂a	 =	 −0.55)	 than	
was	 the	 Height15/DBH15	 ratio	 (r̂a	 =	 −0.89),	 and	 thus,	 Velocity16 
added	 little	 information	 to	 the	predictions.	Because	of	 the	 rapidly	
increasing	complexity	of	models	as	the	number	of	correlated	traits	
increases,	computer	resource	limitations	and	convergence	problems	
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due	to	collinearity	can	arise	 (Schulthess	et	al.,	2016).	 In	this	study,	
convergence	problems	precluded	us	to	fit	simultaneously	more	than	
three	 traits.	Multi‐trait	 Bayesian	models	 are	 expected	 to	 be	more	
efficient	than	multi‐trait	GBLUP	when	the	number	of	traits	increases	
(Calus	&	Veerkamp,	2011).	Overall,	the	benefits	of	adding	more	traits	
seems	limited,	but	this	needs	to	be	further	tested	with	different	GS	
models	and	with	traits	combinations	of	different	levels	of	heritability	
and	genetic	correlations.

4.5 | Index selection provided positive gains for 
most focus traits

Index	selection	is	a	commonly	used	tool	in	tree	improvement	to	se‐
lect	individuals	that	combine	superior	genetic	value	for	several	traits	
of	interest	to	the	breeder.	This	strategy	usually	results	in	lower	ge‐
netic	gain	for	each	trait	compared	with	single‐trait	selection,	because	
correlations	among	traits	are	not	perfect	and	are	often	negative.	Our	
scenario	SI‐1	 reflected	 the	priorities	of	 the	Norway	spruce	breed‐
ers	of	the	province	of	Québec.	Besides	the	current	focus	on	weevil	
resistance	 and	 growth,	wood	quality	 traits	will	 be	 included	 in	 the	
next	generation	selection	criteria	for	this	plantation‐grown	species	
to	avoid	a	 reduction	 in	mechanical	properties	of	 lumber	extracted	
from	faster	growing	trees.	However,	determining	economic	weights	
for	each	trait	is	challenging.	Economic	studies	have	been	conducted	
for	different	conifer	breeding	programs	(e.g.,	Aubry,	Adams,	&	Fahey,	
1998;	 Ivković,	Wu,	McRae,	&	Powell,	 2006;	Petrinovic,	Gélinas,	&	
Beaulieu,	2009),	but	the	resulting	economic	weights	are	not	trans‐
ferable	to	other	species	and	regions	since	they	depend	much	on	the	
wood	 production	 and	 transformation	 systems.	 Because	 of	 these	
difficulties,	 economic	 weights	 have	 not	 been	 established	 yet	 for	
Norway	spruce	in	the	Canadian	breeding	and	forestry	contexts,	and	
the	relative	weights	that	we	have	chosen	for	the	SI‐1	scenario	are	
currently	the	most	likely	to	be	implemented	in	the	short	term	but	are	
still	of	an	indicative	nature.

In	this	study,	favorable	correlations	between	weevil	resistance,	
height	growth,	and	acoustic	velocity	 resulted	 in	only	minor	 trade‐
offs	among	those	traits	in	the	tested	selection	indices.	However,	the	
improvement	for	DBH	or	the	closely	related	volume	(not	estimated	
in	 this	 study)	 appears	 more	 challenging.	 The	 low	 genetic	 control	
and	 the	 important	genotype‐by‐environment	 interaction	observed	
for	DBH	 (see	 also	Mottet	 et	 al.,	 2015)	make	 it	 difficult	 to	 predict	
the	effect	of	selecting	for	weevil	resistance	on	this	trait.	However,	
the	possible	loss	in	lumber	volume	would	likely	be	compensated	by	
less	log	defects	due	to	increased	resistance	of	plantations	to	weevil	
attacks	(Daoust	&	Mottet,	2006).	Thus,	improving	for	weevil	resis‐
tance	would	undoubtedly	benefit	Norway	spruce	as	an	exotic	plan‐
tation	species	in	eastern	Canada.

5  | CONCLUSIONS

In	this	study,	we	investigated	the	genetic	control	of	weevil	resistance	
and	its	relationship	with	wood	and	growth	traits	in	Norway	spruce	as	

an	exotic	plantation	species.	We	further	integrated	these	traits	into	a	
multi‐trait	genomic	selection	(GS)	framework.	We	found	that	in	such	
a	realistic	context,	it	was	possible	to	improve	significantly	for	wee‐
vil	resistance	using	GS,	given	that	weevil	resistance	was	moderately	
to	highly	heritable	and	that	 it	was	positively	genetically	correlated	
with	the	height/DBH	ratio	and	wood	stiffness	(acoustic	velocity).	By	
taking	advantage	of	these	existing	genetic	relationships,	we	showed	
that	multi‐trait	genomic	selection	models	could	 improve	 the	accu‐
racy	of	the	prediction	for	a	scarcely	phenotyped	target	trait	(weevil	
resistance)	by	using	the	information	from	a	readily	available	indicator	
trait.	Finally,	by	combining	multiple	correlated	traits	into	a	selection	
index,	we	obtained	the	best	compromise	for	all	traits	of	interest	that	
corresponded	to	the	priorities	of	the	breeders.	Thus,	this	integrated	
approach	showed	how	genomic	selection	can	be	used	to	breed	si‐
multaneously	 for	 taller,	 stiffer,	 and	more	weevil‐resistant	Norway	
spruces.	We	 conclude	 that	 single/multi‐trait	GS	models	 and	 index	
selection	are	efficient	selection	tools	that	can	be	integrated	into	op‐
erational	breeding	programs	to	accelerate	the	realization	of	genetic	
gains	for	most	traits	of	interest.

Another	advantage	of	integrating	genomic	selection	to	a	breed‐
ing	program	 is	 that,	once	 the	breeding	population	has	been	geno‐
typed,	models	can	easily	be	 recalibrated	 for	additional	 traits,	 such	
as	pest	resistance	or	resilience	to	episodic	climate	extremes	such	as	
droughts.	Such	traits	may	be	costly	and	difficult	to	measure	in	forest	
trees	(e.g.,	Housset	et	al.,	2018)	and	the	use	of	correlated	indicator	
traits	 in	multi‐trait	models	would	 reduce	phenotyping	costs.	Mass	
phenotyping	using	remote	sensing	technologies	could	also	help	iden‐
tify	indicator	traits	that	are	correlated	with	economically	important	
ones	(Dungey	et	al.,	2018).	The	increase	of	information	from	multiple	
correlated	traits	will	provide	opportunities	to	test	novel	multi‐trait	
models	and	to	improve	genomic	selection	accuracies.	Finally,	given	
that	large	numbers	of	candidate	trees	can	be	genotyped	at	the	very	
juvenile	 stage,	multi‐trait	GS	will	 result	 in	highly	 significant	 reduc‐
tions	 in	 testing	 time	 for	 such	 long‐lived	 species,	while	 allowing	 to	
increase	selection	 intensity	compared	 to	more	conventional	 selec‐
tion	approaches.
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